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Abstract—This paper introduces a novel software technique to
optimize thread allocation for merged and fused kernels in multi-
tenant inference systems on embedded Graphics Processing Units
(GPUs). Embedded systems equipped with GPUs face challenges
in managing diverse deep learning workloads while adhering
to Quality-of-Service (QoS) standards, primarily due to limited
hardware resources and the varied nature of deep learning mod-
els. Prior work has relied on static thread allocation strategies,
often leading to suboptimal hardware utilization. To address
these challenges, we propose a new software technique called
TLP Balancer. TLP Balancer automatically identifies the best-
performing number of threads based on performance modeling.
This approach significantly enhances hardware utilization and
ensures QoS compliance, outperforming traditional fixed-thread
allocation methods. Our evaluation shows that TLP Balancer
improves throughput by 40% compared to the state-of-the-art
automated kernel merge and fusion techniques.

Index Terms—Embedded GPU, inference, multi-tenancy.

I. INTRODUCTION

RECENTLY, embedded systems equipped with Graph-
ics Processing Units (GPUs) run various deep learn-

ing workloads [1], [2]. These systems have become crucial
in maintaining stringent Quality-of-Service (QoS) standards.
However, the inherent limitation of hardware resources in
embedded GPUs and the diverse nature of deep learning
models pose significant challenges in workload management
[3]. These challenges involve optimizing hardware utilization
without compromising service latency and queuing delay.

In embedded GPUs, effectively utilizing thread-level par-
allelism (TLP) is crucial for maximizing performance and
efficiency, especially in resource-constrained environments.
Fully exploiting TLP in GPUs allows for the simultaneous
execution of multiple threads, enabling GPUs to make full use
of their computational resources. Prior work, such as kernel
merging and fusion, has been proposed to improve throughput
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and reduce latency in the systems that serve requests requiring
inference with various AI models [4]. However, the prior work
often relies on static thread allocation strategies that fail to
adapt to the varying needs of different models. This inability to
dynamically allocate threads based on workload characteristics
can lead to inefficient hardware utilization.

We propose a novel software technique called TLP Balancer
to address the above challenge. We design TLP Balancer
to determine the best-performing thread allocation in multi-
tenant inference systems. The proposed technique bridges the
performance gap left by static thread allocation strategies
by automatically determining the best-performing number of
threads for the active tasks. TLP Balancer performs the kernel
merge and fusion process by monitoring the inference request
queue to minimize the number of concurrent kernels inspired
by the prior work [4]. Unlike prior work, our technique
predicts the thread count based on model characteristics and
workload, aiming to minimize inference time and maximize
throughput while merging and fusing kernels. Through a com-
prehensive evaluation conducted on the NVIDIA Jetson Orin
platform and deep learning models, the proposed technique
achieves a 40% improvement in throughput compared to the
kernel merge and fusion technique.

II. MOTIVATION AND TLP BALANCER

A. Why TLP Balancer?

Embedded GPUs often serve as multi-tenant inference
systems, processing numerous requests concurrently given a
strict QoS requirement [5]. These systems run various deep
learning models, each distinguished by characteristics such as
the number of layers and the size of tensors. Unlike discrete
GPUs that support parallel executions of multiple GPU kernels
with a dedicated technique, such as the Multi-Instance GPU,
embedded GPUs run multiple kernels by sharing GPU hard-
ware in a time-sharing manner [6]. As such, embedded GPUs
incur frequent context switches, which increase queuing delay
and average inference time and throughput [7].

Prior work has proposed vertical and horizontal kernel
fusion techniques that can run multiple kernels in parallel [8]–
[10]. Vertical fusion combines sequentially invoked kernels
into a single kernel, eliminating global memory accesses for
intermediate results. Horizontal fusion distributes the exe-
cution of multiple kernels across different threads within a
single kernel. This technique allows kernels that use different
resources to execute in parallel, thus better utilizing GPU
resources. In multi-tenant inference systems, the consecutive
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TABLE I
EXPERIMENT CONFIGURATION

Platform NVIDIA Jetson Orin AGX
GPU architecture Ampere architecture

GPU cores 8 SMs, 1792 CUDA cores, 56 Tensor cores
Max. # of threads per SM/block 1536/1024

CPU 8-core Arm Cortex-A78AE v8.2
Memory 32GB LPDDR5, Bandwidth: 204.8GB/s

DNN models ViT-Base ResNet50 VGG16
Number of Parameters 86M 25.6M 138M

kernel requests are typically independent. Thus, the successive
kernels do not share intermediate results, which diminishes the
advantage of vertical fusion for multi-tenant systems. As such,
horizontal fusion is more suitable for multi-tenant systems
than vertical fusion [11]. Horizontal fusion can distribute the
computation of consecutive and independent kernels either
across threads within the same block or across different blocks.

To address the challenge above, an adaptive kernel merge
and fusion technique has been proposed [4]. The kernel merge
and fusion technique consolidates kernels that run the same
model into a single kernel and applies kernel fusion to these
merged kernels. During kernel merging, a kernel is repeatedly
executed using inputs from multiple requests or outputs from
previously executed kernels. Kernel fusion is applied to the
merged kernels, reducing the number of concurrent kernels
and the overhead linked to kernel launches. This approach
minimizes memory access demands by reusing the same
weights across different requests.

Even in the kernels created by the merge and fusion
technique, inefficiencies arise if the thread configuration is
determined without considering various critical factors related
to the launched kernels. Key factors such as the number of
merge requests, input size, and tensor dimensions significantly
influence the optimal thread configuration. These factors affect
the computational workload and memory operations required
for each of the merged kernels being fused. As such, allocating
an appropriate number of threads to each merged kernel is
crucial to maximize GPU hardware utilization.

We investigate the performance impact of thread alloca-
tion using the previously proposed kernel merge and fusion
technique [4]. Our study employs ResNet50 and ViT-Base,
generating 1,000 requests that randomly demand either of
the two models. Initially, we manually determine the thread
allocations that yield the shortest execution time (Oracle) by
varying the number of merge requests. We determine the
Oracle thread configuration by measuring the execution time
for all possible thread configurations and selecting the one with
the shortest execution time. We then compare the execution
times of the Oracle thread configurations to those of the static
thread allocation, as exactly implemented in the prior work
[4], which evenly allocates threads within an SM to inference
tasks in a merged and fused kernel (e.g., consistently allocating
24 warps per kernel). Our methodology involves two models,
which are fused into a single kernel by applying the inner
thread block fusion technique. We use the NVIDIA Jetson
Orin system for the experiments [12]. Table I describes the
detailed configurations. We configure the number of thread
blocks to 24 and the thread block size to 768, enabling the

TABLE II
FIVE EXAMPLES OF FUSED LAYERS, EACH WITH TWO KERNELS

EXECUTING DIFFERENT MODELS. ORACLE THREAD CONFIGURATION IS
THE NUMBER OF THREADS ALLOCATED TO EACH MODEL THAT YIELDS
THE SHORTEST EXECUTION TIME. ALL RESULTS ARE NORMALIZED TO

THE ADAPTIVE KERNEL MERGE AND FUSION TECHNIQUE THAT EVENLY
ALLOCATES THREADS TO BOTH TASKS.

Layer Name Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Oracle Thread Configuration

(ResNet50, ViT-Base)
24, 24 16, 32 12, 36 5, 43 2, 46

Speedup 1.00 1.30 1.47 1.78 1.92

TABLE III
FIVE EXAMPLES OF DIFFERENT NUMBERS OF MERGE REQUESTS. ALL
RESULTS ARE NORMALIZED TO THE ADAPTIVE KERNEL MERGE AND

FUSION TECHNIQUE.

Number of Merge Requests
(ResNet50, ViT-Base)

1, 1 1, 2 1, 3 2, 1 3, 1

Oracle Thread Configuration
(ResNet50, ViT-Base)

12, 36 11, 37 9, 39 14, 34 16, 32

Speedup 1.47 1.53 1.60 1.39 1.31

GPU to fully utilize the hardware. Also, considering the GPU
architecture, we allocate the number of threads for a kernel
in units of warp size (i.e., 32). We allocate a maximum of
48 warps per SM and distribute these warps to the merge and
fused tasks within a kernel.

Table II shows the experimental results for five out of fifty
fused layers, including those with the maximum and minimum
speedup. As each layer computes matrices of different sizes,
the five layers achieve optimal performance with varying
thread configurations. Layer 5 requires 46 warps for ViT-Base
and 2 warps for ResNet50 to achieve the best performance.
This thread allocation results in a 1.92× speedup compared
to the prior work. In contrast, Layer 1 achieves maximum
performance with an equal number of warps allocated to both
models, identical to the thread allocation approach used in
prior work. Therefore, the Oracle thread configuration in Layer
1 does not achieve any performance gain. Such layers represent
a small fraction, comprising only one out of fifty layers. The
effectiveness of the prior work diminishes as the disparity in
the number of warps allocated to each model increases.

Table III shows the results for Layer 3 with varying numbers
of merge requests. Even for the same layer, the number of
merge requests alters the computational load and the num-
ber of memory operations. The Oracle thread configurations
change, leading to speedups ranging from 31% to 60%.

Based on the experimental results, we observe that em-
bedded GPUs can achieve better throughput in multi-tenant
inference environments not only through kernel merge and
fusion techniques but also with a carefully designed thread
allocation policy.

B. TLP Balancer

We propose a new software technique called TLP Balancer
to address the challenges in the previous subsection. The
key idea of TLP Balancer is automatically identifying the
number of threads for all active tasks running on a GPU. We
exploit the behavioral characteristics of inference to identify
the thread counts of all the tasks. Inferences with the same
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Fig. 1. Thread allocation technique of TLP Balancer

AI model exhibit regular and therefore, predictable behaviors.
TLP Balancer determines the best-performing thread count
using a prediction mechanism before a kernel launch.

Figure 1 depicts how TLP Balancer works. TLP Balancer
exploits the implementation of the adaptive kernel merge and
fusion [4]. The prior work has a software request queue. It
monitors every five requests in the queue and analyzes them
to identify how to merge and fuse them. In this technique,
a software kernel merger inserts the codes that iterate the
same kernel with inputs from each request. The kernel merger
repeats the above process for the kernels of all the layers in
the model. After the kernel merger creates the new kernels
for all the models, the kernel fuser determines the models to
fuse based on the parameter counts of the merged kernels. The
kernel fuser appends conditional statements that use thread ID
as a condition, allowing different requests to be run in a kernel.

TLP Balancer ensures that each merged kernel has a similar
execution time, maximizing the overall TLP during execution.
As shown in the right part of Figure 1, the threads for the
merged kernel with a shorter execution time complete first
and remain idle until the other merged kernels complete their
tasks. With the proposed prediction technique, TLP Balancer
enables the GPU to operate kernels at peak TLP, reducing
inference time and enhancing throughput.

We design the prediction technique by mathematically mod-
eling the required number of operations for merged and fused
kernels. Our performance model quantifies the number of
operations per thread, denoted as Mops, as follows:

Mops = ⌈
Mout size

#blocks × Mth

⌉ × Min width × (1 + Mmerge) (1)

where Mth represents the number of threads assigned within
a block for a Model M . Mout size and Min width represent
the output size and the width of the input matrix of Model M ,
respectively. Mmerge represents the number of merge requests.

The first factor on the right-hand side of Eq. 1 indicates
the number of output parameters each thread computes. We
implement the kernels to distribute the computation of output
parameters evenly among each thread. Therefore, the number
of output parameters each thread computes is equal to the
output size divided by the total number of threads. The second
factor represents the operations needed to compute each output
parameter, including fetching each input data element and
its corresponding weight from memory and multiplying them
across the width of the input matrix. The third factor reflects
the number of memory fetches, which varies depending on
the number of merge requests. In inference, the number of

input data fetches increases proportionally with the number of
merge requests. Unlike the input data, the merged and fused
kernel shares the same weight across multiple inputs, so the
number of weight fetches does not change with the number of
merge requests. As such, we multiply the third factor, 1, for
weight fetch and Mmerge for input fetch.

As the fused kernel executes the models in parallel, a kernel
with the highest operation count becomes the critical path. For
a kernel fusing n models, TLP Balancer calculate the number
of operations (Kth) determining the inference time as follows:

Kth = max(M1ops, M2ops, · · · , Mnops) (2)

where Mnops represents the number of operations per thread
for Model n. To predict the best-performing number of threads,
TLP Balancer calculates Kth for all possible thread configu-
rations. It selects the thread configuration that minimizes the
Kth as the best-performing number of threads.

With the merge and fusion technique, we implement TLP
Balancer as follows. After the kernel fuser determines the
models to fuse, TLP Balancer calculates the number of threads
allocated to each model. TLP Balancer calculates the required
number of operations for all possible thread configurations
using Eq. 1 and 2. Then, TLP Balancer finds the thread con-
figuration with the minimum required operations. After TLP
Balancer determines the thread configuration, the kernel fuser
sets the conditions for the conditional statements to ensure
threads are allocated following the determined configuration.

TLP Balancer introduces software overhead while predict-
ing the best-performing thread configuration. For a fused
kernel that fuses two models, the prediction takes 1µs. While
the overhead increases with more fused models, it takes under
1% of inference time for fusing three and four models, with
overheads of 30µs and 500µs, respectively, so it is negligible.

III. EVALUATION

For evaluation, we measure average inference time, through-
put (requests per second), average queuing delay, and the 99th
percentile queuing delay. We implement a request generator
that evenly generates 1,000 inference requests for ResNet50,
ViT-Base, and VGG16 in random order with a Poisson distri-
bution by referring to the prior work [4], [13]. We evaluate a
sequential kernel execution that executes a single request at a
time as the baseline and the kernel merge and fusion technique
for comparison [4]. In our initial study, we find that the
two methods show no significant difference in performance.
Therefore, we distribute the workloads across threads within
the same block. We conduct all the experiments on the
NVIDIA Jetson Orin platform.

First, we compare the average inference time of all the
implementations. To measure the execution time of each
request, we divide the time taken from the kernel launch to
its completion by the number of requests being merged and
fused. Figure 2a shows the experimental results. TLP Balancer
reduces the average inference time by 38% and 20% compared
to the baseline and the merge and fusion, respectively. TLP
Balancer finds the best-performing thread configuration for
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Fig. 2. Experimental results with 1,000 requests. All the results are normalized to the results of sequential execution. Merge and Fusion allocate the thread
to models evenly. For throughput, higher is better. For other metrics, lower is better.

TABLE IV
FIVE EXAMPLES OF KERNELS AND PERFORMANCE OF TLP BALANCER

AND ORACLE CONFIGURATION. ALL RESULTS ARE NORMALIZED TO THE
ADAPTIVE KERNEL MERGE AND FUSION TECHNIQUE.

Layer Name Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
Number of Merge Requests

(ResNet50, ViT-Base)
1, 1 2, 3 2, 2 3, 2 4, 1

Oracle Thread Configuration
(ResNet50, ViT-Base)

2, 46 9, 39 24, 24 28, 20 33, 15

Oracle Speedup 1.92 1.61 1.00 1.14 1.23
TLP Balancer Thread

Configuration
(ResNet50, ViT)

4, 44 8, 40 24, 24 28, 20 33, 15

TLP Balancer Speedup 1.79 1.57 1.00 1.13 1.23

each layer, resulting in an iso-Oracle average inference time.
Although the merge and fusion technique reduces the inference
time, the unbalanced thread allocation incurs a 20% longer
inference time than the oracle.

Figure 2b presents the throughput (requests per second
without violating QoS requirements) of all the techniques. The
TLP Balancer significantly improves throughput by 62% and
40% compared to baseline and the adaptive kernel merge and
fusion technique, respectively. Both the prior work and TLP
Balancer improve throughput by eliminating memory access
for merged requests and minimizing the number of concurrent
kernels. However, the throughput of the prior work is 40%
lower than the Oracle incurred by a longer inference times.

Figure 2c and Figure 2d present the average and 99%tile
queuing delay results, respectively. TLP Balancer exhibits the
same average and 99%tile queuing delays as the Oracle results,
which are 51% and 42% shorter than the baseline, respectively.
If many requests arrive in a short period, parallel execution of
multiple requests and reducing inference time allow requests
to be processed quickly, decreasing the queue waiting time.
Also, TLP Balancer achieves a 22% shorter 99%tile queuing
delay than the adaptive kernel merge and fusion technique due
to a shorter inference time.

Table IV presents the thread configuration for the Oracle
and TLP Balancer, along with their perspective speedups
of kernels. We select five layers with different thread con-
figurations, including those with maximum and minimum
speedups, and present them along with their number of merge
requests. In three out of five layers, TLP Balancer calculates
thread configurations identical to the Oracle cases. As such,
TLP Balancer achieves the same performance as the Oracle.
TLP Balancer shows a 13% error in Layer 1, but this layer
results in only a 2% increase in the overall inference time.
These experimental results demonstrate that TLP Balancer can
accurately calculate the thread configuration regardless of the

layer type or the number of merge requests.
The evaluation shows that TLP Balancer performs very

similarly to the Oracle results by adjusting TLP based on the
size of the fused models and the number of merge requests.

IV. CONCLUSION

In this paper, we propose TLP Balancer that significantly
advances the efficiency and performance of multi-tenant in-
ference systems on embedded GPUs. TLP Balancer predicts
optimal thread allocation for diverse deep learning workloads,
enhancing throughput while ensuring robust adherence to
Quality-of-Service standards. TLP Balancer achieves a 40%
improvement in throughput over the prior work.
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