
SSFFT: Energy-Efficient Selective Scaling for Fast
Fourier Transform in Embedded GPUs

Dongwon Yang

Korea University

Seoul, Republic of Korea

yang2919@korea.ac.kr

Jaebeom Jeon

Korea University

Seoul, Republic of Korea

414dragon@korea.ac.kr

Minseong Gil

Korea University

Seoul, Republic of Korea

ms7859@korea.ac.kr

Junsu Kim

Korea University

Seoul, Republic of Korea

j0807s@korea.ac.kr

Seondeok Kim

Korea University

Seoul, Republic of Korea

seondeok0312@korea.ac.kr

Gunjae Koo

Korea University

Seoul, Republic of Korea

gunjaekoo@korea.ac.kr

Myung Kuk Yoon

Ewha Womans University

seoul, Republic of Korea

myungkuk.yoon@ewha.ac.kr

Yunho Oh

Korea University

seoul, Republic of Korea

yunho_oh@korea.ac.kr

Abstract
Fast Fourier Transform (FFT) is critical in applications such

as signal processing, communications, and AI. Embedded

GPUs are often used to accelerate FFT due to their com-

putational efficiency, but energy efficiency remains a key

challenge due to power constraints. Existing solutions, such

as the cuFFT library provided by NVIDIA, employ static

configurations for the number of thread blocks and threads

per block. This static approach often results in ineffective

threads that consume power without contributing to per-

formance, particularly if the FFT length or batch size varies.

Furthermore, for large FFT lengths, cuFFT internally splits

the computation into multiple kernel invocations. This de-

composition can lead to L2 cache thrashing, resulting in

redundant global memory accesses and degraded efficiency.

To address these challenges, this paper proposes SSFFT, a

software technique for embedded GPUs. The key idea of

SSFFT is to maximize the number of useful threads that con-

tribute to performance while minimizing ineffective threads.

SSFFT is implemented based on a novel theoretical model

that determines how many thread blocks and threads per

block are effective for a given FFT length, batch size, and

hardware resource availability. SSFFT statically determines

these configurations and adaptively launches either a GPU

kernel for regular FFT operations or a newly implemented

kernel that integrates multiple FFT steps. By tailoring thread

allocation to workload characteristics and minimizing inter-

kernel memory interference, SSFFT improves energy effi-

ciency without compromising performance. In our evalua-

tion, SSFFT achieves a 1.29× speedup and a 1.26× improve-

ment in throughput per watt compared to cuFFT.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

LCTES ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1921-9/25/06

https://doi.org/10.1145/3735452.3735529

CCS Concepts: •Computer systems organization→ Em-
bedded software; • Computing methodologies→ Par-
allel algorithms.

Keywords: FFT, Dynamic Thread Scaling, Energy Efficiency

ACM Reference Format:
Dongwon Yang, Jaebeom Jeon, Minseong Gil, Junsu Kim, Seondeok

Kim, Gunjae Koo, Myung Kuk Yoon, and Yunho Oh. 2025. SSFFT:

Energy-Efficient Selective Scaling for Fast Fourier Transform in

Embedded GPUs. In Proceedings of the 26th ACM SIGPLAN/SIGBED
International Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES ’25), June 16–17, 2025, Seoul, Republic of
Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3735452.3735529

1 Introduction
Fast Fourier Transform (FFT) is a widely used algorithm for

efficiently computing the Discrete Fourier Transform (DFT),

with applications in signal processing, communications, and

artificial intelligence (AI) [3, 5, 7, 9, 12, 21, 25, 33]. FFTs are

essential to systems such as real-time signal processing and

AI tasks at the edge, where embedded GPUs are often em-

ployed for their computational efficiency [1]. However, the

power constraints inherent to embedded GPUs make energy-

efficient FFT computation a critical requirement. Therefore,

enhancing energy efficiency while maintaining performance

in FFT operations is critical for embedded GPUs.

We find the following key challenges in GPU-accelerated

FFT computations. First, current solutions, such as cuFFT

library developed by NVIDIA [27], generate GPU kernels for

FFT operations with fixed grid and block dimensions based

on FFT lengths and batch sizes. Such a thread allocation pol-

icy often results in GPU kernels with too few threads ormany

ineffective threads, which consume power without contribut-

ing to throughput improvement. This misconfiguration of

the number of thread blocks (also called grid dimension) and

the number of threads per block (also called thread block

size or block dimension) incurs energy inefficiency [4, 26].

Second, if the FFT length is large, cuFFT internally decom-

poses the computation into two separate kernels to process

https://orcid.org/0009-0000-3073-2665
https://orcid.org/0009-0009-2947-043X
https://orcid.org/0009-0005-8664-9840
https://orcid.org/0009-0008-1582-5212
https://orcid.org/0009-0000-7624-5934
https://orcid.org/0000-0003-1706-6850
https://orcid.org/0000-0002-9332-0251
https://orcid.org/0000-0001-6442-3705
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3735452.3735529
https://doi.org/10.1145/3735452.3735529
https://doi.org/10.1145/3735452.3735529


LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea Yang et al.

the input in stages. While this decomposition reduces per-

kernel memory usage, it often leads to poor data locality

between kernels. In particular, intermediate results written

by the first kernel may be evicted from the L2 cache be-

fore the second kernel can reuse them, resulting in frequent

off-chip memory accesses and L2 cache thrashing. This inef-

ficiency not only increases memory bandwidth pressure but

also affects the performance in large-scale FFT workloads.

To address these challenges, we propose Selective Scaling

FFT (SSFFT), a novel software technique for energy-efficient

FFT computations in embedded GPUs. The key idea of SSFFT

is to selectively scale thread blocks and threads to maximize

the number of useful threads, which contribute to perfor-

mance improvement, while minimizing the occurrence of

ineffective threads. By adapting thread allocation to work-

load characteristics, SSFFT improves both performance and

energy consumption in embedded GPU environments com-

pared to cuFFT. We design a novel mathematical model of

grid and block dimensions, based on not only FFT length and

batch size but also critical hardware resource utilization, such

as shared memory or L2 cache. Then, we implement SSFFT

in software to predetermine the grid and block dimensions

and launch a GPU kernel for FFT operations. In addition to

adaptive thread allocation, SSFFT dynamically selects one

of multiple FFT algorithm implementations depending on

the input size and batch configuration. This algorithm-level

adaptation allows SSFFT to better exploit data locality and

hardware resources under varying workload conditions, fur-

ther improving performance and energy efficiency.

Our evaluation on the NVIDIA Jetson Orin platform shows

that SSFFT outperforms cuFFT. Across various FFT lengths

and batch sizes, SSFFT achieves a 1.29× speedup and a 1.26×
improvement in throughput per watt compared to cuFFT. In

particular, SSFFT achieves up to a 1.8× speedup and a 2×
improvement in throughput per watt for short FFT lengths

and small batch sizes.

In this paper, we make the following contributions:

• We thoroughly analyze the effect of useful threads and

ineffective threads while performing FFT operations

in embedded GPUs.

• Wepresent amathematicalmodel for calculating thread

block and grid dimensions based on FFT lengths and

batch sizes to improve the energy efficiency of FFT

computations in embedded GPUs.

• We design an adaptive FFT algorithm selection to bet-

ter exploit data locality and hardware resources in

software.

The rest of this paper consists of the following sections.

Section 2 explains why FFT operations are required to reduce

ineffective threads in embedded GPUs. Section 5 explains

related work. Section 3 introduces the SSFFT mechanism and

implementation. Section 4 explains the experimental results.

Section 6 concludes this paper.

2 Why SSFFT?
FFT is a crucial algorithm for efficiently computing the dis-

crete fourier transform, and it has broad applications in com-

munications, signal processing, and AI. The computational

requirements of the FFT are heavily influenced by both the

length of the input vector (also called FFT length) and the

number of vectors being processed [7, 12]. The total num-

ber of computations required for an FFT operation increases

logarithmically with the length of the input vector, typically

scaling as 𝑂 (𝑛 log𝑛), where 𝑛 is an FFT length. The overall

computational load scales proportionally with the number

of vectors (we call it batch size) if multiple vectors are in-

volved, such as in multi-channel or multi-dimensional signal

processing tasks. In such cases, the total computation count

becomes 𝑂 (𝑚 · 𝑛 log𝑛), where𝑚 represents batch size.

Unlike traditional edge devices that are equipped with ded-

icated FFT processors [14, 22, 23, 32, 36], embedded GPUs are

viewed as key processors for performing FFT operations for

many emerging applications. Embedded GPUs execute thou-

sands of threads in parallel under strict power constraints,

making energy efficiency a critical factor in their design and

implementation [13, 24, 29]. As such, improving the energy

efficiency of FFT operations is essential for advancing these

technologies in embedded GPUs.

While running GPU applications, one of the most crit-

ical factors is utilizing an appropriate number of threads.

Considering that GPUs execute programs by running thou-

sands of threads in parallel, misallocation of threads incurs

unnecessary energy consumption without contributing to

performance improvements [6, 15, 28, 30, 31]. Although prior

work has significantly advanced energy efficiency in running

FFT operations on GPUs [1, 2], a fundamental inefficiency

persists due to suboptimal thread allocation. To further an-

alyze the effect of the thread misallocation challenge, we

define a useful thread as one that actively contributes to

performance improvements, whereas an ineffective thread

is one that consumes resources but fails to enhance com-

putational throughput. Ineffective threads reduce energy

efficiency because they cause contention among threads for

critical hardware resources, such as the memory system

[15, 30].

A typical approach to improving efficiency in GPU FFT

operations is to maximize the use of shared memory, as it

provides fast, low-latency access compared to global mem-

ory. However, since shared memory shares resources with L1

cache and is limited in size, its effectiveness is constrained,

especially when handling large FFT workloads. In GPUs, L2

cache is shared across all SMs. This shared nature allows

better data reuse and reduces redundant memory accesses,

making it a crucial component in improving energy effi-

ciency for GPU-based FFT operations. Improving L2 cache

hit ratio emerges as the most effective approach to mitigating



SSFFT: Energy-Efficient Selective Scaling for Fast Fourier Transform in Embedded GPUs LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

Table 1. Evaluation configurations

Platform NVIDIA Jetson Orin AGX

GPU architecture Ampere architecture

GPU cores 1792 CUDA cores, 56 Tensor cores

CPU 8-core Arm Cortex-A78AE v8.2

Memory 32GB LPDDR5, Bandwidth: 204.8GB/s

Storage 64GB eMMC 5.1

cuFFT Version 11.0.8 (in Jetpack 6)

Table 2. Grid (gridDim) and Block Dimension (blockDim)

Settings for cuFFT and Oracle Based on Vector Length and

Batch Size. The Oracle configurations are derived from the

results of Figure 1, 2, and 3.

FFT Length Batch Size cuFFT Oracle
gridDim blockDim gridDim blockDim

1K 1 1 128 8 32

1K 16 1 128 4 128

1K 128 1 128 1 256

16K 1 1 1024 32 256

16K 16 1 1024 4 256

16K 128 1 1024 1 256

256K 1 64 512 64 256

256K 16 64 512 16 256

256K 128 64 512 4 512

memory stalls and enhancing both performance and energy

efficiency.

CUDA Fast Fourier Transform (cuFFT) is a library de-

veloped by NVIDIA for performing FFT computations on

NVIDIA GPUs [27]. cuFFT offers APIs that allow develop-

ers to perform complex-to-complex, real-to-complex, and

complex-to-real transforms, making it flexible for various

use cases. While cuFFT simplifies the use of GPUs for FFT

operations, it predetermines the grid and block dimensions

based on the FFT length and the batch size. This static setup

may incur inefficiencies, especially in energy consumption,

due to the creation of ineffective threads.

We investigate the performance impact of thread config-

urations on FFT operations using the NVIDIA Jetson Orin

system for our experiments [8]. The detailed system config-

urations are described in Table 1. We manually implement

an FFT algorithm with CUDA and optimized it to achieve

the same performance as cuFFT 11.0.8 [27]. After that, we

configure FFT operations with three FFT lengths (1K, 16K,

and 256K) and three batch sizes (1, 16, and 128). We measure

throughput per watt of those FFT operations by varying grid

and block dimensions. We measure the power consumption

of the FFT operations with tegrastats to estimate the energy

efficiency [10].

Figures 1, 2, and 3 show the experimental results. We ana-

lyze the relationship between thread block size and energy

efficiency.With an FFT length of 1k and a batch size of 1, only

32 threads in a single thread block are useful. In this case, it

is more efficient to distribute the work across multiple thread

blocks, each with 32 useful threads. Similarly, with an FFT

length of 16k and a batch size of 128, 256 threads in a thread

block are useful. Energy efficiency gains are significant for

an FFT length of 16k with smaller thread block sizes, but

beyond 256 threads per block, the additional threads become

ineffective, resulting in diminishing returns. This behavior

occurs because the hardware resources in an SM, such as

shared memory, become saturated, causing the remaining

threads to be ineffective.

With the experimental results in Figures 1, 2, and 3, we

heuristically determine the optimal thread configurations

for each scenario, called the Oracle configuration. Based on

empirical testing, the Oracle configuration selects the best-

performing and minimum thread configuration for every

case. Table 2 shows the thread and thread block count in

cuFFT and the Oracle configuration for various FFT configu-

rations. In our analysis, cuFFT and the Oracle configuration

differ in their grid dimension and block dimension configura-

tions. For example, with an FFT length of 1k and a batch size

of 1, cuFFT allocates a single thread block with 128 threads.

However, we find that allocating eight thread blocks with 32

threads each is more energy efficient (as shown in Figure 1c).

Also, with an FFT length of 256k and a batch size of 128, only

4 out of 64 thread blocks (with a thread block size of 512)

are useful. Our analysis shows that a more advanced thread

allocation technique than cuFFT is necessary to achieve the

optimal balance between speedup and energy efficiency in

embedded GPUs.

Starting from cuFFT 11.1, L2-cache awareness has been

introduced, utilizing L2 cache for GPUs [27]. However, this

optimization is limited to specific single-GPU 3D C2C FFT

cases. As a result, cuFFT does not fully leverage L2 cache

benefits across a wider range of FFT workloads, such as 1D

and 2D FFTs or batched processing. Consequently, inefficien-

cies in memory access and thread allocation persist, leaving

significant room for further improvements in performance

and energy efficiency.

Despite these updates, we find that the L2 cache hit ratio

during cuFFT execution is close to zero, indicating that L2

cache utilization remains minimal. Detailed experimental

results supporting this observation are presented in Section

4.2. This observation suggests that cuFFT does not effectively

utilize L2 cache in most FFT scenarios, further highlighting

the need for improved cache-aware execution strategies to

enhance performance and energy efficiency.

One possible factor contributing to this inefficiency is

the way cuFFT handles large FFT workloads. To process

large FFTs efficiently, cuFFT decomposes the computation

into multiple stages. For instance, 2D or 3D FFTs, which are

stored in row-major order, are typically split into separate

row-wise and column-wise FFT computations. Even in the

case of large 1D FFTs, cuFFT internally processes the data in

block-wise fashion, often requiring multiple CUDA kernels



LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea Yang et al.

(a) FFT length = 1k. (b) FFT length = 16k. (c) FFT length = 256k.

Figure 1. Throughput per power comparison varying thread block counts and thread block sizes, Batch size is 1. The areas

without bars indicate regions where threads cannot be assigned because the corresponding GPU kernel does not use them.

(a) FFT length = 1k. (b) FFT length = 16k. (c) FFT length = 256k.

Figure 2. Throughput per power comparison varying thread block counts and thread block sizes, Batch size is 16. The areas

without bars indicate regions where threads cannot be assigned because the corresponding GPU kernel does not use them.

(a) FFT length = 1k. (b) FFT length = 16k. (c) FFT length = 256k.

Figure 3. Throughput per power comparison varying thread block counts and thread block sizes, Batch size is 128. The areas

without bars indicate regions where threads cannot be assigned because the corresponding GPU kernel does not use them.

for execution. For example, in 2D FFTs, row FFTs and col-

umn FFTs are executed as separate kernel invocations. This

decomposition can impact L2 cache utilization, as interme-

diate data may be evicted from the cache between kernel

executions, leading to redundant memory accesses. These

structural inefficiencies reinforce the need for a more effec-

tive cache-aware execution strategy that better retains data

in L2 cache, reducing memory traffic and improving both

performance and energy efficiency.

Despite significant advancements in optimizing FFT ex-

ecution on GPUs, such as those seen in tcFFT [20], Tur-

boFFT [34], and energy-efficient methods for edge comput-

ing [14, 22, 32], a fundamental inefficiency remains in the



SSFFT: Energy-Efficient Selective Scaling for Fast Fourier Transform in Embedded GPUs LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

lack of optimal thread allocation, which directly impacts en-

ergy efficiency. Many GPU-accelerated FFT implementations

still utilize suboptimal thread allocation strategies, where the

thread block sizes and grid dimensions are not dynamically

adjusted to match the FFT problem size or the underlying

GPU architecture. This misallocation results in underuti-

lization of GPU threads, leaving many threads consuming

energy without contributing to performance improvements.

Even in high-performance and fault-tolerant implementa-

tions, energy consumption can remain unnecessarily high

if thread resources are not fully exploited. Thus, without

addressing the thread allocation issue, it becomes difficult to

achieve optimal energy efficiency, particularly in large-scale

or real-time FFT applications on GPUs. A more dynamic and

workload-specific approach to thread allocation is required

to fully leverage the capabilities of modern GPUs.

3 SSFFT
To address the challenges explained in Section 2, we pro-

pose a new software technique called SSFFT. The goal of

SSFFT is to properly determine and allocate useful threads on

GPUs while minimizing the occurrence of ineffective threads,

thereby avoiding resource waste. To achieve this objective,

SSFFT consists of two ideas. First, SSFFT determines the grid

and block dimensions based on a new theoretical modeling.

Figure 4 depicts the key idea of SSFFT. SSFFT addresses the

risk of performance degradation that arises if too many FFT

operations run simultaneously or if a single FFT operation

involves an excessive number of thread blocks or threads in a

thread block. Second, depending on FFT length, SSFFT adap-

tively selects either of three algorithms: regular FFT, vector

FFT, and merged FFT. While regular FFT and vector FFT are

based on existing algorithms, we newly implement a merged

FFT algorithm by simply extending a regular FFT algorithm.

With these ideas, SSFFT utilizes GPU hardware resources to

minimize ineffective thread creation, while handling varying

FFT sizes and batch workloads.

3.1 SSFFT Thread Allocation
We implement the key technique of SSFFT bymathematically

modeling the performance and thread block allocation. To

improve data locality and maintain a high L2 cache hit ratio,

SSFFT first determines the amount of data processed in FFT

with the following equation.

𝐴 = 2 << ⌈log
2
(L2_cache_size)⌉ − 2 (1)

where𝐴 denotes the amount of data (in bytes) processed in a

single iteration. The exponent subtracts 2 from the logarithm

of the L2 cache size to compute one-fourth of the cache

capacity. This equation ensures that each iteration operates

on a dataset that likely fits within the cache, reducing cache

misses during FFT computation.

Figure 4.Workload-aware thread allocation of SSFFT.

Given an FFT of length 𝐿 applied to a batch of 𝑁 input

vectors, the total input size is 𝐿 × 𝑁 × 𝐼𝑁 bytes, assuming

each input is IN bytes. For example, if an input is a double-

precision complex number, IN is 8 bytes.With those numbers,

the number of required iterations 𝐾 is calculated as:

𝐾 =
𝐿 × 𝑁 × 𝐼𝑁

𝐴
(2)

This equation determines the number of iterations needed

to process the entire input dataset in chunks of size 𝐴. By

limiting per-iteration memory access to a fraction of the L2

cache, SSFFT achieves better cache utilization and overall

performance. After calculating Equation 2, SSFFT calculates

two types of maximum grid dimension.

𝑀s =
(shared memory per SM)

(shared memory per TB)

× (#SMs) (3)

𝑀f =
(FFT length)

64

(4)

Equation 3 calculates a maximum grid dimension that can

be allocated on a GPU based on the available shared memory

size (𝑀𝑠 ). Equation 4 calculates a maximum grid dimension

based on the FFT length (𝑀𝑓 ). As each warp consists of

32 threads and the butterfly operation in an FFT operation

involves two operands, the FFT length is divided by 64 to

determine the appropriate number of thread blocks.

With𝑀𝑠 ,𝑀𝑓 , and FFT batch size𝑁 , SSFFT determines grid

and block dimensions as follows. If a single FFT is executed

(𝑁 = 1), SSFFT considers the following two scenarios. If the

total number of threads required exceeds the FFT length (2×
𝑀𝑠 > 𝑀𝑓 ), the number of grid dimension is limited by𝑀𝑓 and

the block dimension is fixed at 32. Otherwise, if the number

of threads is constrained by the available shared memory,



LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea Yang et al.

Algorithm 1 Pseudocode of FFT functions for SSFFT

Input: FFT length 𝐿, batch size 𝑁 ,

#Iterations 𝐾 , Input data 𝐼

Parameters: k-th sub unit of input 𝐼𝑘

1: function regular_FFT(float 𝐼 , int 𝐿, ...)

2: DoFFT(𝐼 ,
√
𝐿, ...)

3: //

√
𝐿-point FFT operation for input I

4: end function
5:

6: function vector_FFT(float 𝐼 , int 𝐿, ...)

7: DoFFT(𝐼 , 𝐿, ...)

8: // L-point FFT operation for input I

9: end function
10:

11: function merged_FFT(float 𝐼 , int 𝐿, int 𝑁 , int 𝐾 , ...)

12: for 𝑘 = 0 → 𝐾 do
13: DoFFT(𝐼𝑘 ,

√
𝐿, ...)

14: //

√
𝐿-point FFT operation for sub-unit I

15: // Transpose Matrix

16: DoFFT(𝐼𝑘 ,
√
𝐿, ...)

17: //

√
𝐿-point FFT operation for sub-unit I

18: end for
19: end function

the grid dimension and block dimensions are determined as

follows.

𝐷grid = 2 ×𝑀𝑠 (5)

𝐷block =
Max. # of concurrent threads on a GPU

𝑀𝑠

. (6)

For batched FFT execution (𝑁 > 1), the grid and block

dimensions are dynamically adjusted to efficiently distribute

workloads while considering the batch size. The initial grid

size is determined as follows.

𝐷grid = 2 ×𝑀𝑠 ≫ ⌊log
2
(𝑁 )⌋ . (7)

The final grid size is set as:

𝐷grid = min(𝑀𝑓 , 𝐷grid). (8)

The block size is then computed as:

𝐷block =
Max. # of concurrent threads on a GPU

𝐷grid

. (9)

3.2 SSFFT Algorithms
SSFFT employs three distinct FFT algorithms to adapt to

varying input sizes and batch configurations. SSFFT dynami-

cally selects one of the three FFT algorithms: Regular FFT,

vector FFT, and merged FFT. Algorithm 1 describes the FFT

algorithms. Note that the regular FFT and vector FFT imple-

mentations are identical to the implementations in cuFFT

[27] and the merged FFT is a newly added implementation

in SSFFT.

Regular FFT, illustrated in regular_FFT (lines 1–4), is

suitable for short FFT lengths. It decomposes the input into

Table 3. Grid and Block Dimension Settings for SSFFT and

Oracle Based on Vector Length and Batch Size

FFT Length Batch Size SSFFT Oracle
gridDim blockDim gridDim blockDim

1K 1 16 32 8 32

1K 16 16 32 4 128

1K 128 4 128 1 256

16K 1 32 256 32 256

16K 16 4 256 4 256

16K 128 1 256 1 256

256K 1 64 256 64 256

256K 16 16 256 16 256

256K 128 16 256 4 256

√
L-point sub-FFTs, allowing more efficient use of shared

memory and enabling finer control over memory access

patterns. Regular FFT is selected if the total input size exceeds

a cache-friendly threshold, specifically if it cannot fit into

one-fourth of the L2 cache.

Vector FFT is used if the FFT length is small and the batch

size is moderate or large. As shown in vector_FFT (lines

6–9), the algorithm performs a standardL-point FFT directly

on the input without decomposition. This approach mini-

mizes overhead and achieves high performance if the FFT

length is relatively short and the overall workload size is

sufficiently large.

Merged FFT, described in merged_FFT (lines 11–19), tar-
gets large FFT lengths and small batch sizes. It partitions

the input into 𝐾 sub-units and performs two successive

√
L-

point FFTs on each sub-unit, separated by a matrix transpose

operation. This transpose step improves memory coalescing

and enables better data reuse across row- and column-wise

FFTs. The merged FFT reduces kernel launch overhead and

increases L2 cache hit rates by preserving temporal locality.

3.3 SSFFT Implementation
Algorithm 2 presents the full implementation flow of SSFFT.

SSFFT begins by computing the cache-aware memory thresh-

old𝐴 and the number of iterations𝐾 based on the FFT length

𝐿, batch size 𝑁 , and the L2 cache size. The value 𝐴 corre-

sponds to one-fourth of the L2 cache capacity, and deter-

mines whether the input fits within a single iteration without

causing significant cache pressure.

SSFFT first evaluates whether the total input size (𝐿 ×
𝐼𝑁 bytes) exceeds 𝐴. If this condition holds, SSFFT invokes

the regular_FFT routine twice (once for the column-wise

FFT and once for the row-wise FFT) separated by a matrix

transpose. Prior to kernel invocation, the SSFFT_scaling
function is called to determine the optimal gridDim and

blockDim based on shared memory capacity and the FFT

problem size.

If the input size fits within the cache threshold, SSFFT

further checks whether the FFT length is small (i.e., 𝐿 ≤
16K) and the total workload size is sufficiently large (i.e.,

𝐿 × 𝑁 /8 ≥ 4KB). If both conditions are satisfied, SSFFT



SSFFT: Energy-Efficient Selective Scaling for Fast Fourier Transform in Embedded GPUs LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

Algorithm 2 SSFFT function pseudocode

Input: FFT length: 𝐿, batch size: 𝑁

Parameters: Maximum #Thread Blocks (TBs):𝑀𝑠 ,

Maximum #TBs based on fft length:𝑀𝑓 ,

shared memory size per TB: 𝑆

Limit of input size per iteration: 𝐴 bytes

Size of a single input: 𝐼𝑁 bytes

Output: gridDim: 𝐷𝑔𝑟𝑖𝑑 , blockDim: 𝐷𝑏𝑙𝑜𝑐𝑘

1: function SSFFT_scaling(int 𝐿, int 𝑁 )

2: // Calculate𝑀𝑠 , 𝑀𝑓

3: 𝑀𝑠 = (shared memory per SM)/𝑆 × #𝑆𝑀𝑠

4: 𝑀𝑓 = 𝐿/64
5: if N == 1 then
6: // Single operation

7: if 2 ×𝑀𝑠 > 𝑀𝑓 then // #TB limited by fft length

8: 𝐷𝑔𝑟𝑖𝑑 = 𝑀𝑓

9: 𝐷𝑏𝑙𝑜𝑐𝑘 = 32

10: else// #TB limited by shared memory size

11: 𝐷𝑔𝑟𝑖𝑑 = 2 ×𝑀𝑠

12: 𝐷𝑏𝑙𝑜𝑐𝑘 =(Total maximum threads)/𝑀𝑠

13: end if
14: else
15: // Batch operation

16: 𝐷𝑔𝑟𝑖𝑑 = 2 ×𝑀𝑠 >> 𝑓 𝑙𝑜𝑜𝑟 (𝑙𝑜𝑔2 (𝑁 ))
17: 𝐷𝑔𝑟𝑖𝑑 =𝑚𝑖𝑛(𝑀𝑓 , 𝐷𝑔𝑟𝑖𝑑 )
18: 𝐷𝑏𝑙𝑜𝑐𝑘 =(Total maximum threads)/𝐷𝑔𝑟𝑖𝑑

19: end if
20: return 𝐷𝑔𝑟𝑖𝑑 , 𝐷𝑏𝑙𝑜𝑐𝑘

21: end function
22: function SSFFT(int 𝐿, int 𝑁 , ...)

23: 𝐴 = 2 << (𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑙𝑜𝑔2(L2 cache size)) − 2)
24: 𝐾 = 𝐿 × 𝑁 × 𝐼𝑁 /𝑆𝑖
25: // Calculate 𝐴,𝐾

26: if 𝐿 × 8 > 𝐴 then
27: 𝐷𝑔𝑟𝑖𝑑 , 𝐷𝑏𝑙𝑜𝑐𝑘 = SSFFT_scaling(𝐿, 𝑁 )

28: // Calculate gridDim and blockDim

29: regular_FFT <<<𝐷𝑔𝑟𝑖𝑑 , 𝐷𝑏𝑙𝑜𝑐𝑘 , 𝑆>>>(...)

30: // 1-D column dimension FFT

31: // Transpose Matrix

32: regular_FFT <<<𝐷𝑔𝑟𝑖𝑑 , 𝐷𝑏𝑙𝑜𝑐𝑘 , 𝑆>>>(...)

33: // 1-D row dimension FFT

34: else
35: if 𝐿 <= 16𝑘 and 𝐿 × 𝑁 /8 >= 4𝑘 then
36: 𝐷𝑔𝑟𝑖𝑑 , 𝐷𝑏𝑙𝑜𝑐𝑘 = SSFFT_scaling(𝐿, 𝑁 )

37: // Calculate gridDim and blockDim

38: vector_FFT <<<𝐷𝑔𝑟𝑖𝑑 , 𝐷𝑏𝑙𝑜𝑐𝑘 , 𝑆>>>(...)

39: // 1-D vector FFT

40: else
41: 𝐷𝑔𝑟𝑖𝑑 , 𝐷𝑏𝑙𝑜𝑐𝑘 = SSFFT_scaling(𝐿, 𝑁 /𝐾 )
42: // Calculate gridDim and blockDim

43: merged_FFT <<<𝐷𝑔𝑟𝑖𝑑 , 𝐷𝑏𝑙𝑜𝑐𝑘 , 𝑆>>>(...)

44: // merged FFT

45: end if
46: end if
47: end function

executes the vector_FFT kernel, which performs a 1-D FFT

over each input vector without decomposition, using the

dimensions computed by SSFFT_scaling.
In all other cases (typically large FFTs with small batch

sizes), SSFFT opts for the merged_FFT strategy. This kernel
processes smaller sub-units of the input sequentially and

applies two

√
𝐿-point FFTs for each unit, improving L2 cache

locality and reducing redundant global memory accesses. For

this case, SSFFT_scaling is invoked with a reduced batch

size (𝑁 /𝐾 ) to adapt the thread configuration to the smaller

sub-problems. By integrating this multi-branch execution

model with dynamic thread scaling, SSFFT ensures that each

kernel launch is tailored to the workload and hardware con-

straints, minimizing the creation of ineffective threads while

maximizing GPU resource efficiency.

4 Evaluation
4.1 Evaluation Environments
As we explained in Section 2, we use an NVIDIA Jetson

Orin platform whose specification is described in Table 1 for

evaluating FFT performance. We set the FFT lengths to 1K,

16K, and 256K, with the batch sizes ranging from 1 to 128. We

measure and compare the total execution time to complete all

the FFT operations in a batch. Also, we evaluate throughput

per watt of SSFFT. We compare SSFFT with cuFFT. For a fair

comparison, as we mentioned in Section 2, we implement an

FFT algorithm with CUDA and optimized it to achieve the

same performance as cuFFT. After that, we implement SSFFT

to scale gridDim and blockDim as we modeled in Section 3.

4.2 Experimental Results
Table 3 shows the thread block and thread count set by SSFFT

and the Oracle configuration. These results show that SSFFT

closely aligns with the Oracle configuration regarding grid-

Dim and blockDim settings across various FFT lengths and

batch sizes. SSFFT determines these parameters to maximize

performance and energy efficiency, approaching the optimal

Oracle configuration. The ability of SSFFT to achieve such

precise thread allocation is rooted in the mathematical mod-

eling that calculates the optimal number of thread blocks

and threads based on FFT length, batch size, and shared

memory constraints. This dynamic scaling allows SSFFT to

operate efficiently under different workloads, minimizing

ineffective threads similar to the Oracle. cuFFT uses fixed

grid and block dimension configurations based on the FFT

length and batch size, which are not adjusted to fully utilize

GPU resources. SSFFT, in contrast, dynamically adjusts the

gridDim and blockDim values based on the FFT length and

batch size, leading to efficient GPU resource utilization.

For an FFT length of 16k, SSFFT determines the optimal

gridDim and blockDim, all are equivalent to the Oracle con-

figurations. For an FFT length of 256k and a batch size of

1, SSFFT sets gridDim to 64 and blockDim to 256, optimiz-

ing GPU resource allocation. As the batch size increases to



LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea Yang et al.

(a) FFT length = 1k. (b) FFT length = 16k. (c) FFT length = 256k.

Figure 5. Speedup comparison between cuFFT and SSFFT across varying batch sizes and FFT lengths. Each subfigure reports

the normalized execution time of SSFFT relative to cuFFT. SSFFT consistently outperforms cuFFT in scenarios with small

batch sizes, demonstrating the benefit of selective thread scaling and adaptive algorithm selection in resource-constrained

environments. With large vectors, SSFFT achieves performance improvement in all batch sizes.

(a) FFT length = 1k. (b) FFT length = 16k. (c) FFT length = 256k.

Figure 6. Throughput per power comparison between cuFFT and SSFFT. All results are normalized to the baseline, cuFFT.

SSFFT consistently outperforms cuFFT in both metrics, with the most significant improvements observed at small batch sizes

(e.g., 1–4), where cuFFT suffers from thread underutilization and memory inefficiency. For large FFT lengths such as 256k,

SSFFT maintains consistent energy efficiency improvements over cuFFT by reducing L2 cache thrashing and maintaining

well-balanced thread allocation across batch sizes.

128, SSFFT further scales the gridDim to 16 and blockDim

to 256, Such results are also the same as those of the Oracle

configurations. With these results, we observe that SSFFT

effectively maximizes the number of useful threads while

avoiding the creation of ineffective threads. This dynamic

adjustment enables SSFFT to outperform cuFFT in terms of

both performance and energy efficiency for larger workloads.

For FFT length of 1K and batch sizes 1 and 16, SSFFT sets a

higher gridDim of 16 than the Oracle. Also, for batch sizes

128, SSFFT sets a higher gridDim of 4 than the Oracle. Even

with those thread allocations, SSFFT still outperforms cuFFT

according to the experimental results, which we will explain

later.

Figure 5 shows the performance of SSFFT compared to

cuFFT. For all the configurations, SSFFT achieves a 1.29×
(geometric mean) better performance than cuFFT. For small

batch sizes (under 16), SSFFT consistently delivers better

performance compared to cuFFT. With FFT lengths of 1K

and 16K, SSFFT achieves a speedup of up to 2.2× for batch

size 1, and for a 256K FFT length, SSFFT achieves up to

1.39× speedup on average, with all batch sizes. This perfor-

mance advantage stems from the ability of SSFFT to adjust

thread blocks based on FFT length and hardware resource

utilization, ensuring optimal utilization of useful threads. In

contrast, cuFFT with the fixed thread allocation results in

underutilization of GPU resources for smaller batch sizes.

Small batch sizes are often used in audio or speech signal

processing, and in such cases, SSFFT can achieve significant

performance improvements.

As the batch size increases, the performance gap between

SSFFT and cuFFT narrows. For larger batch sizes, such as

64 and 128, SSFFT performs with marginal performance im-

provements compared to cuFFT. For an FFT length of 16K

and a batch size of 128, SSFFT matches cuFFT in execution

time, showing a 1.07× improvement in speedup. Such results

are attributed to the fact that both implementations can ef-

ficiently handle larger batch operations, with the proposed

dynamic scaling providing a slight edge. In 1k FFT vectors

and batch sizes from 16 to 64, SSFFT achieves 1.11× speedup

compared to cuFFT. SSFFT focuses on optimizing thread

block size based on shared memory constraints, allowing it

to maintain efficiency even as the batch size grows. With 1k

FFT vectors and a batch size of 128, SSFFT shows a 1.05×



SSFFT: Energy-Efficient Selective Scaling for Fast Fourier Transform in Embedded GPUs LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

(a) FFT length = 1k. (b) FFT length = 16k. (c) FFT length = 256k.

Figure 7. L2 cache hit ratio comparison between cuFFT and SSFFT across varying FFT lengths and batch sizes. For all FFT

lengths of 1k and 16k respectively, SSFFT consistently achieves over 80% L2 cache hit ratio in batch sizes, while cuFFT suffers

from poor locality, with hit ratios falling below 10% for most configurations. These results show that SSFFT significantly

improves memory locality by minimizing inter-kernel cache interference and tailoring kernel execution to the cache hierarchy.

(a) FFT length = 1k. (b) FFT length = 16k. (c) FFT length = 256k.

Figure 8. Average stalls per instruction comparison between cuFFT and SSFFT across varying FFT lengths and batch sizes. For

FFT lengths of 1k and 16k, SSFFT maintains similar or slightly lower stall counts compared to cuFFT. However, the impact

on performance is minimal in these cases, as the execution time per GPU kernel is short. For an FFT length of 256k, SSFFT

significantly outperforms cuFFT as the batch size increases, reducing stalls by 34% on average.

speedup compared to cuFFT. Such results show that SSFFT

does not sacrifice performance in any case.

SSFFT also demonstrates significant improvements in en-

ergy efficiency for small batch sizes. Figure 6 shows the ex-

perimental results. For all the configurations, SSFFT achieves

a 1.26× (geometric mean) better throughput per watt than

cuFFT. With a batch size of 1 and FFT lengths of 1K and 16K,

SSFFT shows up to 2.1 × better energy efficiency than cuFFT.

This improvement is primarily due to the ability of SSFFT

to allocate just enough thread blocks to fully utilize GPU

resources without wasting energy on ineffective threads.

SSFFT maintains energy efficiency advantages over cuFFT as

the batch size increases, though the margin narrows. SSFFT

can minimize unnecessary power usage while maintaining

performance by dynamically scaling thread blocks based

on FFT length and batch size. For the largest batch size

(128), SSFFT and cuFFT exhibit similar energy efficiency, with

SSFFT maintaining a slight advantage. At this scale, both

implementations intensively utilize GPU resources, and the

power savings offered by the proposed dynamic thread man-

agement technique become less pronounced. Nonetheless,

SSFFT continues to show a small edge in power consumption,

especially in configurations where it minimizes the creation

of ineffective threads. As mentioned in Section 5, too many

ineffective threads in a GPU kernel often result in inefficient

utilization of critical hardware resources, such as memory

systems. To further illustrate this inefficiency, we analyze

the L2 cache hit ratio of SSFFT compared to cuFFT. Figure 7

presents the experimental results.

SSFFT effectively reduces ineffective threads, thereby im-

proving memory locality and minimizing unnecessary mem-

ory accesses. This idea leads to a significantly higher L2

cache hit ratio compared to cuFFT across different FFT sizes

and batch configurations. For instance, in the case of 1K and

16K FFT lengths, SSFFT achieves near 100% L2 cache hit ratio

for small batch sizes (under 32), whereas cuFFT exhibits an

L2 cache hit ratio close to zero. cuFFT does not effectively

utilize the L2 cache, leading to frequent off-chip memory

accesses and increased memory bandwidth contention.

For an FFT length of 256K, SSFFT maintains a high L2

cache hit ratio across all batch sizes (94% on average), whereas

cuFFT continues to exhibit a 0% L2 cache hit ratio. cuFFT

fails to effectively utilize the L2 cache even for large FFT

sizes, leading to frequent off-chip memory accesses. This

inefficiency primarily stems from the fact that cuFFT ex-

ecutes two separate kernels for computing the FFT along

different dimensions. During this process, intermediate data



LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea Yang et al.

frequently evicts useful cache-resident data, causing cache

thrashing and excessive memory bandwidth consumption.

In contrast, SSFFT applies the merged-FFT approach, as

outlined in Algorithm 1, which minimizes the number of

kernel launches and improves cache locality. By carefully

preserving theworking set within the L2 cache across compu-

tation phases, SSFFT enables data reuse across column-wise

and row-wise FFT computations without unnecessary cache

eviction. As a result, memory accesses are more localized,

significantly improving the L2 cache hit ratio and reducing

off-chip memory traffic. These findings reinforce the need

for improved L2 cache-aware execution in cuFFT to mitigate

memory inefficiencies and optimize GPU resource utilization,

particularly for both small and large FFT sizes in batched

processing.

The cache-friendly behavior of SSFFT contributes to im-

proving the performance of FFT operations, especially with

large FFT vectors. To show it, we measure the average stalls

(cycles) per instruction with 1k, 16k, and 256k vectors using

NVIDIA Nsight Compute. Figure 8 shows the experimental

results. With 1k vectors (Figure 8a), cuFFT and SSFFT spend

7.3 and 7.5 cycles per instruction, respectively. And, with

16k vectors (Figure 8b), cuFFT and SSFFT show 20.8 and 22.0

cycles per instruction. cuFFT and SSFFT spend similar cycles

to complete an instruction. Even though SSFFT achieves a

much higher L2 cache hit ratio than cuFFT, a single kernel ex-

hibits a short execution time with any implementation with

1k and 16k vectors. As such, the impact of cache hits does not

vary the performance significantly. Instead, SSFFT achieves

the performance improvement by allocating threads across

SMs in a better way than cuFFT. In case of cuFFT, it often

makes each thread iterate a loop, resulting overall execution

time depending on such sequential behavior. Unlike cuFFT,

SSFFT effectively spreads tasks by allocating more thread

than cuFFT, so the average number of instructions per thread

reduces. Such behavior of SSFFT results in performance im-

provement over cuFFT.

With 256k vectors (Figure 8c), SSFFT reduces the average

stalls per instruction significantly compared to cuFFT. SSFFT

and cuFFT show 26.4 and 39.4 cycles per instructions, so

the proposed technique achieves a 34% reduction. As SSFFT

achieves more L2 cache hits than cuFFT, it could reduce the

stalls caused by memory operations. With this advantage,

SSFFT could achieve the performance with large FFT vectors

in any batch size. Based on this behavior analysis, we find

that SSFFT effectively utilizes GPU hardware resources, thus

achieving a better energy efficiency.

5 Related Work
Prior work has proposed various GPU-accelerated FFT oper-

ation techniques [20, 34], and energy-efficient methods for

edge computing [14, 22, 32]. TurboFFT introduces a high-

performance FFT implementation on GPUs, designed with a

focus on fault tolerance [34]. TurboFFT employs a two-sided

checksum scheme that detects and corrects silent data cor-

ruptions during computation, thereby enhancing reliability.

TurboFFT focuses on the advancement in fault tolerance for

FFT computations, so it is orthogonal to our work. tcFFT

presents a half-precision FFT library specifically optimized

for NVIDIA Tensor Cores [20]. tcFFT supports a wide range

of 1D and 2D FFT sizes, leveraging mixed-precision capabili-

ties of Tensor Cores. Adámek et al. have explored the energy

efficiency improvements for FFT computations on GPUs [2].

They have studied the impact of frequency scaling on the

cuFFT.

Despite advancements in improving energy efficiency

while running FFT operations on GPUs achieved by the

prior work, a fundamental inefficiency remains in the lack

of optimal thread allocation, which directly impacts energy

efficiency. So, we focus on a more dynamic and workload-

specific approach to thread allocation. The aforementioned

prior work is not directly comparable to our approach, as it

optimizes FFT computation using Tensor Cores or frequency

scaling.

Prior work has shown that maximum thread-level paral-

lelism (TLP) on GPUs may incur performance degradation

due to cache contention or increased stalls in memory sys-

tems [11, 15, 18, 30, 35]. To mitigate such a problem, various

hardware-level warp throttling techniques [16, 17, 19] have

been proposed. Despite the effectiveness of these approaches,

there has been a lack of software-based solutions that dy-

namically adjust thread allocation to avoid performance bot-

tlenecks, particularly in energy-constrained environments

such as embedded systems. This gap calls for software tech-

niques that optimize thread management for FFT operations

on GPUs.

6 Conclusion
In this paper, we propose SSFFT, a novel software technique

that improves the energy efficiency of FFT operations on

embedded GPUs. Unlike the static thread allocation used

by cuFFT, which leads to underutilized GPU resources and

energy inefficiencies, SSFFT selectively scales thread blocks

to maximize performance while minimizing the creation

of ineffective threads. Also, depending on workload char-

acteristics, SSFFT dynamically selects and runs one of pre-

determined FFT algorithms. Our evaluation demonstrates

the effectiveness of SSFFT in balancing performance and en-

ergy efficiency, making it well-suited for power-constrained

environments such as edge computing.

Acknowledgments
This work was supported by the National Research Foun-

dation of Korea (NRF) funded by Korea government (MSIT)

(NRF-2022R1C1C1011021, NRF-2021R1C1C1012172, and RS-

2025-00553645). Yunho Oh is the corresponding author.



SSFFT: Energy-Efficient Selective Scaling for Fast Fourier Transform in Embedded GPUs LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

References
[1] Tahmid Abtahi, Colin Shea, Amey Kulkarni, and Tinoosh Mohsenin.

2018. Accelerating convolutional neural network with FFT on embed-

ded hardware. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 26, 9 (2018), 1737–1749. https://doi.org/10.1109/TVLSI.2018.
2825145

[2] Karel Adámek, Jan Novotný, Jeyarajan Thiyagalingam, and Wesley

Armour. 2021. Efficiency Near the Edge: Increasing the Energy Effi-

ciency of FFTs on GPUs for Real-Time Edge Computing. IEEE Access 9
(2021), 18167–18182. https://doi.org/10.1109/ACCESS.2021.3053409

[3] Nasir Ahmed and Kamisetty Ramamohan Rao. 2012. Orthogonal trans-
forms for digital signal processing. Springer Science & Business Media.

https://doi.org/10.1109/ICASSP.1976.1170121
[4] Tyler Allen and Rong Ge. 2016. Characterizing power and performance

of gpu memory access. In 2016 4th International Workshop on Energy
Efficient Supercomputing (E2SC). IEEE, 46–53. https://doi.org/10.1109/
E2SC.2016.012

[5] Younghoon Byun, Minho Ha, Jeonghun Kim, Sunggu Lee, and

Youngjoo Lee. 2019. Low-complexity dynamic channel scaling of

noise-resilient CNN for intelligent edge devices. In 2019 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE, 114–
119. https://doi.org/10.23919/DATE.2019.8715280

[6] Tiffany Connors, Apan Qasem, and Qing Yi. 2015. Modeling the impact

of thread configuration on power and performance of GPUs. Machine
Learning: Theory and Applications (2015), 28.

[7] James W Cooley and John W Tukey. 1965. An algorithm for the

machine calculation of complex Fourier series. Mathematics of compu-
tation 19, 90 (1965), 297–301. https://doi.org/10.2307/2003354

[8] Nvidia Corporation. 2022. NVIDIA Jetson AGX Orin Series: A Giant
Leap Forward for Robotics and Edge AI Applications. https://resources.
nvidia.com/en-us-jetson-agx-orin-pathfactory-content

[9] Rene de Jesus Romero-Troncoso. 2016. Multirate signal processing to

improve FFT-based analysis for detecting faults in induction motors.

IEEE Transactions on industrial informatics 13, 3 (2016), 1291–1300.

https://doi.org/10.1109/TII.2016.2603968
[10] Nvidia Developer. 2023. Power Optimization with NVIDIA Jet-

son. https://developer.nvidia.com/blog/power-optimization-with-
nvidia-jetson/

[11] Saumay Dublish, Vijay Nagarajan, and Nigel Topham. 2019. Poise:

Balancing thread-level parallelism and memory system performance

in GPUs using machine learning. In 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, 492–505.
https://doi.org/10.1109/HPCA.2019.00061

[12] P. Duhamel and M. Vetterli. 1990. Fast fourier transforms: A tutorial

review and a state of the art. Signal Processing 19, 4 (1990), 259–299.

https://doi.org/10.1016/0165-1684(90)90158-U
[13] Tao Gong, Tiantian Fan, Jizheng Guo, and Zixing Cai. 2017. GPU-based

parallel optimization of immune convolutional neural network and

embedded system. Engineering Applications of Artificial Intelligence 62
(2017), 384–395. https://doi.org/10.1016/j.engappai.2016.08.019

[14] Shijie Jiang, Yi Zou, Hao Wang, and Wanwan Li. 2023. An FFT Ac-

celerator Using Deeply-coupled RISC-V Instruction Set Extension for

Arbitrary Number of Points. In 2023 IEEE 34th International Conference
on Application-specific Systems, Architectures and Processors (ASAP).
IEEE, 165–171. https://doi.org/10.1109/ASAP57973.2023.00036

[15] Onur Kayıran, Adwait Jog, Mahmut T Kandemir, and Chita R Das.

2013. Neither more nor less: Optimizing thread-level parallelism for

GPGPUs. In Proceedings of the 22nd international conference on Parallel
architectures and compilation techniques. IEEE, 157–166. https://doi.
org/10.1109/PACT.2013.6618813

[16] Mahmoud Khairy, Mohamed Zahran, and Amr G Wassal. 2015. Effi-

cient utilization of gpgpu cache hierarchy. In Proceedings of the 8th
Workshop on General Purpose Processing using GPUS. 36–47. https:
//doi.org/10.1145/2716282.2716291

[17] Gunjae Koo, YunhoOh,WonWooRo, andMurali Annavaram. 2017. Ac-

cess pattern-aware cachemanagement for improving data utilization in

GPU. In Proceedings of the 44th annual international symposium on com-
puter architecture. 307–319. https://doi.org/10.1145/3079856.3080239

[18] Hsien-Kai Kuo, Bo-Cheng Charles Lai, and Jing-Yang Jou. 2014. Reduc-

ing contention in shared last-level cache for throughput processors.

ACM Transactions on Design Automation of Electronic Systems (TO-
DAES) 20, 1 (2014), 1–28. https://doi.org/10.1145/2676550

[19] Ang Li, Weifeng Liu, Linnan Wang, Kevin Barker, and Shuaiwen Leon

Song. 2018. Warp-consolidation: A novel execution model for gpus.

In Proceedings of the 2018 International Conference on Supercomputing.
53–64. https://doi.org/10.1145/3205289.3205294

[20] Binrui Li, Shenggan Cheng, and James Lin. 2021. tcFFT: A Fast Half-

Precision FFT Library for NVIDIA Tensor Cores. In 2021 IEEE Inter-
national Conference on Cluster Computing (CLUSTER). 1–11. https:
//doi.org/10.1109/Cluster48925.2021.00035

[21] Sheng Lin, Ning Liu, Mahdi Nazemi, Hongjia Li, Caiwen Ding, Yanzhi

Wang, and Massoud Pedram. 2018. FFT-based deep learning deploy-

ment in embedded systems. In 2018 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 1045–1050. https:
//doi.org/10.23919/DATE.2018.8342166

[22] Yiyang Lin, Yi Zou, and Yanfeng Yang. 2024. CSIFA: A Configurable

SRAM-based In-Memory FFT Accelerator. In 2024 IEEE 35th Interna-
tional Conference on Application-specific Systems, Architectures and
Processors (ASAP). IEEE, 161–162. https://doi.org/10.1109/ASAP61560.
2024.00040

[23] Shaohan Liu and Dake Liu. 2018. A high-flexible low-latency memory-

based FFT processor for 4G, WLAN, and future 5G. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 27, 3 (2018), 511–523.
https://doi.org/10.1109/TVLSI.2018.2879675

[24] Arian Maghazeh, Unmesh D Bordoloi, Petru Eles, and Zebo Peng. 2013.

General purpose computing on low-power embedded GPUs: Has it

come of age?. In 2013 International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS). IEEE, 1–10.
https://doi.org/10.1109/SAMOS.2013.6621099

[25] Jason L Mitchell, Marwan Y Ansari, and Evan Hart. 2004. Advanced

image processing with directx® 9 pixel shaders. ShaderX2 (2004),

439–464.

[26] Sparsh Mittal and Jeffrey S Vetter. 2014. A survey of methods for

analyzing and improving GPU energy efficiency. ACM Computing
Surveys (CSUR) 47, 2 (2014), 1–23. https://doi.org/10.1145/2636342

[27] NVIDIA. 2025. cuFFT API Reference. https://docs.nvidia.com/cuda/
cufft/index.html

[28] Yunho Oh, Gunjae Koo, Murali Annavaram, and Won Woo Ro. 2019.

Linebacker: preserving victim cache lines in idle register files of GPUs.

In Proceedings of the 46th International Symposium on Computer Ar-
chitecture (Phoenix, Arizona) (ISCA ’19). Association for Computing

Machinery, New York, NY, USA, 183–196. https://doi.org/10.1145/
3307650.3322222

[29] Zaifeng Pan, Feng Zhang, Yanliang Zhou, Jidong Zhai, Xipeng Shen,

Onur Mutlu, and Xiaoyong Du. 2021. Exploring data analytics without

decompression on embedded GPU systems. IEEE Transactions on
Parallel and Distributed Systems 33, 7 (2021), 1553–1568. https://doi.
org/10.1109/TPDS.2021.3119402

[30] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2012. Cache-

Conscious Wavefront Scheduling. In 2012 45th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture. 72–83. https://doi.org/10.
1109/MICRO.2012.16

[31] Richard Schoonhoven, Bram Veenboer, Ben Van Werkhoven, and

K Joost Batenburg. 2022. Going green: optimizing GPUs for energy

efficiency through model-steered auto-tuning. In 2022 IEEE/ACM In-
ternational Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS). IEEE, 48–
59. https://doi.org/10.1109/PMBS56514.2022.00010

https://doi.org/10.1109/TVLSI.2018.2825145
https://doi.org/10.1109/TVLSI.2018.2825145
https://doi.org/10.1109/ACCESS.2021.3053409
https://doi.org/10.1109/ICASSP.1976.1170121
https://doi.org/10.1109/E2SC.2016.012
https://doi.org/10.1109/E2SC.2016.012
https://doi.org/10.23919/DATE.2019.8715280
https://doi.org/10.2307/2003354
https://resources.nvidia.com/en-us-jetson-agx-orin-pathfactory-content
https://resources.nvidia.com/en-us-jetson-agx-orin-pathfactory-content
https://doi.org/10.1109/TII.2016.2603968
https://developer.nvidia.com/blog/power-optimization-with-nvidia-jetson/
https://developer.nvidia.com/blog/power-optimization-with-nvidia-jetson/
https://doi.org/10.1109/HPCA.2019.00061
https://doi.org/10.1016/0165-1684(90)90158-U
https://doi.org/10.1016/j.engappai.2016.08.019
https://doi.org/10.1109/ASAP57973.2023.00036
https://doi.org/10.1109/PACT.2013.6618813
https://doi.org/10.1109/PACT.2013.6618813
https://doi.org/10.1145/2716282.2716291
https://doi.org/10.1145/2716282.2716291
https://doi.org/10.1145/3079856.3080239
https://doi.org/10.1145/2676550
https://doi.org/10.1145/3205289.3205294
https://doi.org/10.1109/Cluster48925.2021.00035
https://doi.org/10.1109/Cluster48925.2021.00035
https://doi.org/10.23919/DATE.2018.8342166
https://doi.org/10.23919/DATE.2018.8342166
https://doi.org/10.1109/ASAP61560.2024.00040
https://doi.org/10.1109/ASAP61560.2024.00040
https://doi.org/10.1109/TVLSI.2018.2879675
https://doi.org/10.1109/SAMOS.2013.6621099
https://doi.org/10.1145/2636342
https://docs.nvidia.com/cuda/cufft/index.html
https://docs.nvidia.com/cuda/cufft/index.html
https://doi.org/10.1145/3307650.3322222
https://doi.org/10.1145/3307650.3322222
https://doi.org/10.1109/TPDS.2021.3119402
https://doi.org/10.1109/TPDS.2021.3119402
https://doi.org/10.1109/MICRO.2012.16
https://doi.org/10.1109/MICRO.2012.16
https://doi.org/10.1109/PMBS56514.2022.00010


LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea Yang et al.

[32] Peter Schulz and Grigore Sleahtitchi. 2023. FPGA-based Accelerator

for FFT-Processing in Edge Computing. In 2023 IEEE 12th International
Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications (IDAACS), Vol. 1. IEEE, 590–595.
https://doi.org/10.1109/IDAACS58523.2023.10348654

[33] Nicolas Vasilache, Jeff Johnson, Michael Mathieu, Soumith Chintala,

Serkan Piantino, and Yann LeCun. 2014. Fast convolutional nets with

fbfft: A GPU performance evaluation. arXiv preprint arXiv:1412.7580
(2014). https://doi.org/10.48550/arXiv.1412.7580

[34] Shixun Wu, Yujia Zhai, Jinyang Liu, Jiajun Huang, Zizhe Jian, Huan-

gliang Dai, Sheng Di, Zizhong Chen, and Franck Cappello. 2024.

TurboFFT: A High-Performance Fast Fourier Transform with Fault

Tolerance on GPU. arXiv preprint arXiv:2405.02520 (2024). https:
//doi.org/10.48550/arXiv.2405.02520

[35] Jun Zhang, Yanxiang He, Fanfan Shen, Qing’an Li, and Hai Tan. 2019.

Memory-aware TLP throttling and cache bypassing for GPUs. Cluster
Computing 22 (2019), 871–883. https://doi.org/10.1007/s10586-017-
1396-0

[36] Yupu Zhao, Hong Lv, Jun Li, and Lulu Zhu. 2022. High performance

and resource efficient FFT processor based on CORDIC algorithm.

EURASIP Journal on Advances in Signal Processing 2022, 1 (2022), 23.

https://doi.org/10.1186/s13634-022-00855-6

Received 2025-03-21; accepted 2025-04-21

https://doi.org/10.1109/IDAACS58523.2023.10348654
https://doi.org/10.48550/arXiv.1412.7580
https://doi.org/10.48550/arXiv.2405.02520
https://doi.org/10.48550/arXiv.2405.02520
https://doi.org/10.1007/s10586-017-1396-0
https://doi.org/10.1007/s10586-017-1396-0
https://doi.org/10.1186/s13634-022-00855-6

	Abstract
	1 Introduction
	2 Why SSFFT?
	3 SSFFT
	3.1 SSFFT Thread Allocation
	3.2 SSFFT Algorithms
	3.3 SSFFT Implementation

	4 Evaluation
	4.1 Evaluation Environments
	4.2 Experimental Results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

