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Abstract

Online Class-Incremental Learning (OCIL) enables a model
to learn new classes from a data stream. Since data stream
samples are seen only once and the capacity of storage is
constrained, OCIL is particularly susceptible to Catastrophic
Forgetting (CF). While exemplar replay methods alleviate CF
by storing representative samples, the limited capacity of the
buffer inhibits capturing the entire old data distribution, lead-
ing to CF. In this regard, recent papers suggest image com-
pression for better memory usage. However, existing methods
raise two concerns: computational overhead and compression
defects. On one hand, computational overhead can limit their
applicability in OCIL settings, as models might miss learn-
ing opportunities from the current streaming data if compu-
tational resources are budgeted and preoccupied with com-
pression. On the other hand, typical compression schemes
demanding low computational overhead, such as JPEG, in-
troduce noise detrimental to training. To address these issues,
we propose Salient Frequency-aware Exemplar Compression
(SFEC), an efficient and effective JPEG-based compression
framework. SFEC exploits saliency information in the fre-
quency domain to reduce negative impacts from compression
artifacts for learning. Moreover, SFEC employs weighted
sampling for exemplar elimination based on the distance be-
tween raw and compressed data to mitigate artifacts further.
Our experiments employing the baseline OCIL method on
benchmark datasets such as CIFAR-100 and Mini-ImageNet
demonstrate the superiority of SFEC over previous exemplar
compression methods in streaming scenarios.

1 Introduction
With the increasing prevalence of personal intelligent de-
vices and applications, vast amounts of data are generated
and consumed daily. To enhance user experience, ensure pri-
vacy, and maintain real-time performance, there is a pressing
need to update deep learning models directly with stream-
ing data. This necessity has led to the emergence of a new
learning paradigm called Online Class Incremental Learn-
ing (OCIL) (Mai et al. 2022; Wang et al. 2023a; Liu 2020;
Lange et al. 2021).

Meanwhile, Deep Neural Networks (DNNs) are under-
going exponential growth in complexity and size (Gho-
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Figure 1: The streaming scenario underscores the significant
impact of computational costs associated with compression
in Online Class Incremental Learning (OCIL). (a) We as-
sume the baseline (Caccia et al. 2022) captures the entire
distribution of streaming data (b) Existing exemplar com-
pression methods (Caccia et al. 2020; Wang et al. 2022; Luo
et al. 2023) enable saving more exemplars within the re-
stricted memory. However, the compression introduces ad-
ditional computational overhead (i.e., forward and/or back-
ward passes). Since training and compression processes
compete for the same limited resources, these exemplar
compression methods risk missing opportunities to learn
from streaming data.

lami et al. 2024). However, edge platforms are constrained
by limited computational power, memory, and storage re-
sources, facing significant challenges in keeping pace with
the rapid expansion of DNN applications. Although ad-
vancements in hardware technologies, such as Compute
Express Link (CXL) memory (Samsung 2024; SK hynix
2024), have been introduced to mitigate some of the resource
constraints, the adoption of such technologies remains in
progress (SK hynix; Ha et al. 2023). Consequently, edge
platforms continue to suffer from a pronounced scaling gap
between the capabilities of existing hardware and the de-
mands of emerging DNN applications.

In this context, OCIL is particularly vulnerable to Catas-
trophic Forgetting (CF), a phenomenon where a model for-
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gets previously acquired knowledge (McCloskey and Cohen
1989). As edge platforms have limited computational re-
sources, a continual learner could potentially miss the oppor-
tunity to learn streaming data due to the computation over-
head for learning if the computation resources are already
in use when new data arrives. (Ghunaim et al. 2023; Zhang
et al. 2024; Prabhu et al. 2023; Seo, Koh, and Choi 2024; Ma
et al. 2023). A recent study reveals that computationally effi-
cient methods, such as ER and ER-ACE, outperform numer-
ous other OCIL methods (Ghunaim et al. 2023). Moreover,
the restricted capacity of the buffer leads to data imbalances
between old and new classes, which becomes more signif-
icant as the task progresses (Ahn et al. 2021; Caccia et al.
2022; Lin et al. 2023; Luo et al. 2023).

To overcome memory constriction, several papers suggest
storing compressed data in the buffer, thereby increasing the
number of exemplars available for replay (Caccia et al. 2020;
Wang et al. 2022; Luo et al. 2023). For example, AQM learns
Vector-Quantised Variational Auto-Encoder (VQ-VAE) to
store encoded representations instead of full images (Cac-
cia et al. 2020), and MRDC compresses images using JPEG
at various quality levels, selecting the optimal one for train-
ing (Wallace 1992; Wang et al. 2022). However, these meth-
ods introduce additional computational overhead due to the
optimization required for compression, which can be partic-
ularly problematic on resource-constrained edge devices. As
the optimization demands forward and/or backward passes,
the previous works incur additional computational burdens
and occupy the limited computation resources (e.g., GPUs)
during training.

Since the compression and training processes share the
same limited resources, as shown in Figure 1, the compu-
tational overhead from compression limits the ability of a
model to capture the entire data stream for learning. In our
experiments, AQM loses the chance to process 50% of the
incoming data, while MRDC and CIM only handle 37.5%
and 20% of the total streaming data, respectively, compared
to the simple baseline ER-ACE (Caccia et al. 2022). There-
fore, despite the effectiveness of these optimization-based
compression methods, their efficacy in streaming scenarios
on resource-limited edge platforms remains compromised.

In this sense, we focus on developing a computationally
efficient compression method that simultaneously min-
imizes compression defects for learning. JPEG (Wallace
1992) is a viable option for computational efficiency as it
achieves a high compression rate without necessitating ad-
ditional forward and/or backward passes. However, JPEG
may lead to considerable compression defects for training.
JPEG compression is designed for the human visual system,
which is less sensitive to high frequencies than low frequen-
cies. Consequently, JPEG uses quantization tables that ap-
ply significantly larger quantization coefficients to high fre-
quencies than low frequencies. The intensive quantization
on high frequencies can lead to a loss of valuable infor-
mation for training since networks take advantage of both
low and high frequencies when training (Abello, Hirata, and
Wang 2021; Wang et al. 2023b; Chen, Ren, and Yan 2022;
Chen et al. 2021; Lv and Zhu 2021; Zhang et al. 2023).

To achieve computational efficiency and the reduction

of compression artifacts, we propose a simple yet effec-
tive JPEG-based compression framework for OCIL called
Salient Frequency-aware Exemplar Compression (SFEC).
Akin to JPEG compression, SFEC achieves computational
efficiency and a high compression rate via frequency quanti-
zation and entropy encoding. However, unlike JPEG, SFEC
intensively quantizes less salient frequencies, which are de-
rived from gradients of spatial frequencies.

Even though SFEC quantizes less salient spatial frequen-
cies, the compression may lead to artifacts due to the loss
of information from quantization. To further alleviate the
impact of compression defects on training, we introduce
a compression-aware buffer management scheme. Specifi-
cally, our framework stores the reconstruction error between
the original and reconstructed data after compression with
a compressed image. After the buffer is filled, SFEC uti-
lizes the distance as a weight for exemplar eviction. As
a result, SFEC eliminates significantly distorted data with
a high probability and successfully mitigates the effects
caused by compression artifacts during training. For eval-
uation, we conduct experiments on two OCIL benchmark
datasets, CIFAR-100 and MiniImageNet, under the stream-
ing scenarios depicted in the recent paper (Ghunaim et al.
2023). With varying buffer sizes, SFEC consistently shows
improvement in accuracy over the baseline and other com-
pression methods by a significant margin. This paper makes
the following contributions:
1. We observe the computational overhead from the previ-

ous exemplar compression methods, and the impact of
the computation cost for training in streaming scenarios
for OCIL.

2. We introduce Salient Frequency-aware Exemplar Com-
pression (SFEC), a computationally efficient and adap-
tive compression framework for OCIL.

3. We propose compression-aware buffer management that
effectively compromises compression defects with mini-
mal cost.

4. We conduct a thorough evaluation in streaming scenarios
on OCIL benchmark datasets with the baseline, ER-ACE.
Our results show the superiority of SFEC over previous
exemplar compression methods.

2 Related Work
2.1 Online Class Incremental Learning
Existing Online Class Incremental Learning (OCIL) is
mainly based on ER (Rolnick et al. 2019), which imple-
ments a small buffer to store and replay old class data (Rol-
nick et al. 2019; Rebuffi et al. 2017; Aljundi et al. 2019a,b;
Lin et al. 2023; Caccia et al. 2022; Gu et al. 2022; Guo,
Liu, and Zhao 2022; Ahn et al. 2021; Buzzega et al. 2020;
Chaudhry et al. 2018). For example, ER-ACE (Caccia et al.
2022) addresses Catastrophic Forgetting (CF) by regular-
izing the computation of softmax over previous and new
classes. Meanwhile, MIR (Aljundi et al. 2019a) retrieves ex-
emplars from memory whose losses increase the most with
each model update. GSS (Aljundi et al. 2019b) updates the
buffer with the incoming data that enriches the diversity of
gradients in the memory.
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2.2 Continual Exemplar Compression
Recently, several papers suggest compressing input data
before memory update to better utilize the limited space
of a buffer while reducing compression artifacts for train-
ing (Caccia et al. 2020; Wang et al. 2022; Luo et al.
2023). AQM (Caccia et al. 2020) trains Vector Quantised-
Variational Auto-Encoder (VQ-VAE) for compression and
replay. MRDC (Wang et al. 2022) compresses images us-
ing JPEG with the best compression quality among several
candidates with several forward passes. A more recent ap-
proach, CIM (Luo et al. 2023) generates a saliency mask
from learned activation functions and bi-level optimization.
Subsequently, CIM down-samples non-discriminative pixels
(i.e., out of the saliency mask).

2.3 JPEG-based Compression
JPEG (Wallace 1992) is a well-studied compression al-
gorithm including RGB to YUV conversion, chroma-
subsampling, Discrete Cosine Transform (DCT), and quan-
tization. After quantization, JPEG constructs the bitstream
using entropy encoding. JPEG decoding performs the in-
verse order of the encoding process. Typically, JPEG ex-
ploits the default quantization tables for the human visual
system, which aggressively quantizes high frequencies. If
users define a quality level for JPEG compression, JPEG
scales the default quantization tables according to the scal-
ing factor, quality (Tuba and Bacanin 2014). As JPEG com-
pression may hinder model inference, GRACE (Xie and
Kyu-Han 2019) and AutoJPEG (Xie et al. 2022) attempt to
obtain optimal YUV conversion weights and quantization
tables for model inference while maximizing the bandwidth
(i.e., compression rate) for offloading.

2.4 Saliency
Saliency detection, originating from (Itti, Koch, and Niebur
1998), classifies the informative region of images. Nu-
merous approaches suggest novel detection mechanisms
(Achanta et al. 2009; Hou and Zhang 2007; Simonyan,
Vedaldi, and Zisserman 2014; Wang et al. 2015; Shriku-
mar, Greenside, and Kundaje 2017; Li et al. 2015; Hou,
Harel, and Koch 2011; Schauerte and Stiefelhagen 2012;
Xie and Kyu-Han 2019). Saliency detection is categorized
as whether it uses frequency information or neural networks.
For example, Spectral Residual (Hou and Zhang 2007) iden-
tifies salient regions by distinguishing them from approxi-
mated background statistics in the frequency domain. Alter-
natively, model-based saliency maps utilize gradients of the
input (Simonyan, Vedaldi, and Zisserman 2014; Wang et al.
2015). In this paper, we employ the gradients of the spatial
frequencies as the saliency scores (Simonyan, Vedaldi, and
Zisserman 2014; Wang et al. 2015).

3 Preliminaries
3.1 Online Class Incremental Learning
Online Class Incremental Learning (OCIL) splits a data
stream into a sequence of learning tasks, T = {T1, ..., TN}.
When learning each task, Tt, the model observes the cor-
responding data stream Dt, which contains (Xt

⋃
Yt) and

save the representative data as exemplars, Do. Do consists
of (Xo

⋃
Yo) in the memory buffer, M . Unlike traditional

OCIL, exemplar compression methods store compressed im-
ages X c instead of Xo in M. The performance of the model
is estimated by a subset (i.e., held-out set) of {D1, ...,Dt}
after each task. Thus, the model learns the combined dataset
(X ,Y) = (Xt,Yt)

⋃
(X c

o ,Yo).

3.2 Streaming scenarios
In streaming scenarios with budgeted computational re-
sources, the training complexity of any method for OCIL can
lead to missing data from the current stream as illustrated in
Figure 1 and in the recent study (Ghunaim et al. 2023). Dur-
ing task Tt, a continual learner is trained on streaming data
Dt. This data stream, Dt, involves a sequence of data points
{X1, ...,Xk} represented in time steps k. As the training
cost increases with certain OCIL methodologies, the learner
misses the data stream more (i.e., the learner can observe
only {X1,X3, ...,Xk−1}). In contrast, a computationally ef-
ficient OCIL framework enables the model to capture the
entire data stream.

4 Methodology
We propose Salient Frequency-aware Exemplar Compres-
sion (SFEC) framework for OCIL, focusing on computa-
tional efficiency and reduction in compression artifacts for
training. To achieve minimal computational overhead, SFEC
follows JPEG compression since JPEG does not require ex-
tra forward and/or backward passes (Wallace 1992). How-
ever, JPEG is optimized for human visual perception, which
aggressively compresses high-frequency components (Xie
and Kyu-Han 2019; Tuba and Bacanin 2014). In contrast to
the human visual system, neural networks utilize both high
and low frequencies to acquire new knowledge (Abello, Hi-
rata, and Wang 2021; Wang et al. 2023b; Chen, Ren, and Yan
2022). Thus, employing JPEG in its standard for compress-
ing exemplars can cause critical compression artifacts, ad-
versely affecting model performance. To tackle this, we sug-
gest adaptive quantization that aggressively quantizes less
salient frequencies rather than high frequencies. As the gra-
dients of the spatial frequencies attribute to the saliency as
described in Section 2.4, we calculate the saliency score sn,
where sn = |gn|. Furthermore, we develop a simple yet ef-
fective buffer management scheme that evicts significantly
distorted images after compression as they potentially de-
grade model performance during replay. Section 4.2 pro-
vides the detailed implementation.

4.1 Saliency-aware Frequency Quantization
Saliency-aware frequency quantization within SFEC frame-
work is designed to efficiently find and store salient in-
formation in images. To measure the saliency score and
facilitate JPEG-based compression, the incoming image
(X ∈ RC×H×W , C, H, W , mean the number of channels,
height, and width) is converted into YUV channels (X̂ ∈
RC×H×W ). Then, we split X̂ into patches (X̂ ∈ RC×H

P ×W
P ,

P is the size of patches) to obtain a manageable magnitude
of DCT coefficients, same to the typical JPEG compression.
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Figure 2: The overall framework of Salient Frequency-aware Exemplar Compression (SFEC). Given the input from the data
stream, the framework converts the RGB input into YUV and spatial frequencies (f ) using Discrete Cosine Transform (DCT).
Then, SFEC reconstructs the data into its original format via Inverse Discrete Cosine Transform (IDCT) and YUV-2-RGB
conversion for feed-forward. Subsequently, SFEC obtains gradients (g) of spatial frequencies, which attribute the saliency (s)
of spatial frequencies. SFEC quantizes frequencies lower than the mean of the saliency score (s̄) of the each image as described
in Section 4.1. After compression, SFEC updates the buffer with reconstruction loss between original and compressed images
to eliminate significantly distorted images after compression with high probability. Section 4.2 provides the details.

DCT is applied to each patch, resulting in spatial frequencies
(f ∈ RC×H

P ×W
P ). For feed-forward the network, the origi-

nal RGB data X is reconstructed through Inverse Discrete
Cosine Transform (IDCT) and YUV-to-RGB conversion.
The gradients of the spatial frequencies (g ∈ RC×H

P ×W
P )

are then obtained via backpropagation. The saliency score
(s ∈ RC×H

P ×W
P ) is calculated as follows:

s = ḡ (1)

where ḡ are average gradients of the spatial frequencies
across patches. Consequently, three patch sizes of saliency
maps that represent YUV channels for each image are gener-
ated. Finally, we generate quantization tables for each chan-
nel as follows.

q̂n =

{
f̄n sn < τ

1 sn > τ
(2)

where τ represents a threshold to determine whether the
quantization is applied. To achieve adaptive quantization for
each level, we set τ as

τ =
λ

n
×

n∑
i=1

ŝi (3)

Although a hyperparameter λ is defined for generaliza-
tion in our framework, we demonstrate its robustness to
variations in λ. This suggests that additional forward and/or
backward passes for optimizing λ, analogous to the previous
works, are unnecessary (see Section 5.2 for details). Finally,
our framework merges the partitioned quantization tables q̂
and form the complete quantization tables (q ∈ RC×H

P ×W
P ).

The tables, q, are applied for all patches of DCT coefficients
f .

f̂ = [f ⊙ 1/q] (4)

where f̂ denotes quantized DCT coefficients, and [] in-
dicates a rounding operation. The remaining steps adhere to
the JPEG compression process (e.g., Huffman encoding). As
a result, the buffer saves JPEG images as shown in Figure 2.

4.2 Compression-Aware Buffer Management
An inherent issue with lossy compression is loss of informa-
tion, which can lead to artifacts. Although our framework
compresses images based on saliency information to pre-
serve valuable frequencies, compression may introduce un-
desirable defects in images for training. Notably, such dis-
torted images repeatedly affect training while remaining in
the buffer. To overcome this, we design a new buffer pol-
icy that leverages the extent of distortion from compres-
sion. The buffer management scheme records the distance
between compressed and original data to calculate weights
for elimination. As the distance scale may vary depending on
each class, we normalize the distance across each class and
utilize it as the weight. Akin to Reservoir sampling (Vitter
1985), the new data is inserted in the buffer with the prob-
ability of Nm/Nt, where Nm is the total number of images
in the buffer and Nt denotes the total number of samples
that the model has observed. Finally, our framework deletes
the indices sampled from Multinomial Distribution Multn
using the weights if the sampled indices exist in the buffer.

We employ reconstruction error between images before
and after the compression as a measure of distance. In con-
trast to the herding (Rebuffi et al. 2017), used for offline
continual learning, OCIL does not allow to store all images
of each class, indicating that the embedding mean of each
class is unavailable during training. Therefore, we adopt re-
construction loss instead of using the distance between the
embedding space.

Given the original RGB image Xi, and the reconstructed
image X c

i after compression, the distance is

di(X c
i ,Xi) = ∥(X c

i −Xi)∥ (5)

17898



Our compression framework updates the buffer with com-
pressed images and their corresponding distances. If the
buffer is filled with compressed images, SFEC calculates the
weights for deletion tailored to the distance. The dimension
of the weights is identical to Nt, and each Wi is calculated
as follows:

Wi =

{
(Nc × di)/(

∑Nc

k=1 dk ×Nt) if i ≤ Nm

1/Nt if i > Nm
(6)

Nc represents the total number of indices with in the cor-
responding class. The distance for each index is normalized
to sum to 1 across indices within the same class.

Lastly, the buffer removes the indices sampled from the
multinomial distribution, Multn, if the indices exist in the
buffer.

idx ∼ Multn(Nt | W ) (7)

5 Experiments
5.1 Experimental Settings

Datasets and implementation details The experiments
are conducted on two benchmark datasets: CIFAR-100
(Krizhevsky, Hinton et al. 2009) and Mini-ImageNet
(Vinyals et al. 2016). Specifically, Mini-ImageNet is down-
sized to [64 × 64]. The datasets are split into ten tasks, and
each task consists of 10 classes. Also, we conduct experi-
ments varying the size of the memory buffer, M , with {500,
1000, 2000, 5000} for all methodologies and datasets. The
backbone model is Reduced ResNet18, which is consistent
with numerous studies in online continual learning (Lin et al.
2023; Caccia et al. 2022, 2020; Gu et al. 2022; Aljundi et al.
2019a,b; Chaudhry et al. 2018). The network is trained on
samples drawn from both the data stream and the memory,
utilizing a learning rate of 0.1 with the SGD optimizer. For
other hyperparameters of the existing methods, we follow
the papers (Caccia et al. 2020; Wang et al. 2022; Luo et al.
2023). For instance, MRDC sets five quality candidates for
JPEG compression, which are 10, 25, 50, 75, 90. CIM uses
a compression ratio of 4.0 for non-discriminative pixels. We
evaluate AQM only on CIFAR-100 using the one block of
VQ-VQE due to its varying computational cost and mem-
ory requirements across datasets. We use a quality level of
75 for naive JPEG, which is the default value. Meanwhile,
SFEC utilizes the same patch size (8× 8) and the YUV con-
version weights with JPEG. In this paper, we conducted all
experiments using λ = 1.

We examine ER-ACE as the baseline since it requires
the same computational overhead as ER, the simplest OCIL
strategy, while achieving superior performance than ER
(Caccia et al. 2022). ER-ACE performs a single gradient
update over a batch from the stream and a batch from the
memory. All comparison methods are incorporated in ER-
ACE, including the delay caused by computation overhead,
depicted as δ.

Methods GFLOPs Cs Delay (δ)
ER-ACE (Caccia et al. 2022) 6.3G 1 0

AQM (Caccia et al. 2020) 12.6G 2 1
MRDC (Wang et al. 2022) 16.8G 8/3 5/3

CIM (Luo et al. 2023) 69.6G 6 5
SFEC (Ours) 6.3G 1 0

Table 1: Computational overhead and the corresponding de-
lay of exemplar compression methods.

Streaming scenarios and delay models We consider the
fast and slow streaming scenarios discussed in (Ghunaim
et al. 2023). The fast streaming scenario refers to the en-
vironment in which the continual learner learns from the
stream, quickly incoming and passing by. We assume the ad-
ditional overhead to the baseline limits the learner from cap-
turing the whole data stream as described in Section 3.2. On
the contrary, the slow streaming scenario depicts the circum-
stance that the stream allows sufficient time for processing
complex learning methods until the next data comes. In this
case, computationally efficient methods can perform mul-
tiple gradient updates using the same data while the more
complex methods are still processing.

The computational overhead of each method is presented
in Table 1. The relative computation cost and the corre-
sponding delay are denoted as Cs and δ. Following the pa-
per (Ghunaim et al. 2023), we also measure the GFLOPs for
forward passes using FlopsProfiler and manually calculate
GFLOPs for the backward passes. Then, the relative com-
putational complexity Cs is calculated based on the base-
line, ER-ACE. If a method requires Cs of 2, the correspond-
ing delay is 1. In the slow streaming scenario, we assume
that CIM captures the entire data stream. During CIM com-
presses batch images, the baseline performs five times more
model updates with the same data, which is depicted as ER-
ACE++.

Overhead analysis Our framework introduces a negligi-
ble amount of backward passes on input sizes (i.e., 3 ×
C × H × W , including the backward passes on f , X̂ , X ).
This computation overhead is equivalent to adding param-
eters to the models for backpropagation, which are about
10K on CIFAR-100 dataset. Such overhead is minimal com-
pared to the total number of model parameters (i.e., less than
1% as Reduced ResNet18 contains 1.1M parameters). Since
CPUs handle image storage and buffer management, saving
images and the buffer management are decoupled from the
training loop, and their latency can be hidden.

Evaluation metric The performance of the model is esti-
mated by a held-out dataset of {D1, ...,DN} after each task
T⊔. The accuracy of the model on i-th task after training k-th
task is defined as aik. We can measure the average accuracy
rate Ak. In this paper, we use the final average accuracy, AN ,
for the evaluation metric, which is adopted by the prior stud-
ies (Lin et al. 2023; Caccia et al. 2022, 2020; Gu et al. 2022;
Aljundi et al. 2019a,b; Chaudhry et al. 2018).
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Dataset [sample size] CIFAR-100 [32 × 32] Mini-ImageNet [64 × 64]
Methods M=500 M=1000 M=2000 M=5000 M=500 M=1000 M=2000 M=5000

ER-ACE (δ = 0) 14.91 ± 0.8 18.26 ± 0.7 21.74 ± 0.4 26.12 ± 0.8 11.36 ± 0.9 13.59 ± 1.0 17.41 ± 1.2 20.96 ± 1.7
MIR (δ = 1.5) 14.59 ± 0.7 16.89 ± 0.8 21.83 ± 0.6 25.98 ± 0.7 10.39 ± 1.1 12.18 ± 1.5 18.16 ± 0.9 21.44 ± 1.8
GSS (δ = 5) 5.54 ± 1.1 7.27 ± 1.0 9.40 ± 0.7 10.17 ± 1.6 4.0 ± 0.8 4.73 ± 0.8 5.52 ± 0.8 6.19 ± 0.8
AQM (δ = 1) 8.67 ± 0.7 8.73 ± 1.1 9.75 ± 1.0 10.37 ± 1.1 N/A N/A N/A N/A

MRDC (δ = 5/3) 14.59 ± 0.7 16.08 ± 1.5 17.85 ± 1.9 17.89 ± 2.2 8.80 ± 1.2 8.47 ± 1.1 8.30 ± 1.3 7.74 ± 0.9
JPEG (δ = 0) 14.56 ± 0.7 17.42 ± 1.2 19.23 ± 1.0 20.2 ± 0.6 12.86 ± 2.2 12.42 ± 3.1 14.18 ± 3.6 14.99 ± 3.5
CIM (δ = 5) N/A N/A N/A N/A 11.19 ± 0.7 12.99 ± 0.8 15.52 ± 0.6 19.93 ± 1.4

SFEC (δ = 0) 16.79 ± 1.0 20.38 ± 0.8 23.85 ± 1.2 27.48 ± 1.0 14.19 ± 0.7 17.64 ± 1.4 19.50 ± 1.8 22.45 ± 0.8

Table 2: Final average accuracy (higher is better) in the fast streaming scenario. The additional delay from each method is
depicted as a δ. MIR (Aljundi et al. 2019a) and GSS (Aljundi et al. 2019b) are memory update and retrieval strategies, which
demonstrate the impact of the delay for buffer-relevant methods. The complexity of MIR and GSS follows the description in
(Ghunaim et al. 2023). All the results are reported as an average of 10 runs, with the best scores highlighted in boldface.

Dataset [sample size] CIFAR-100 [32 × 32] Mini-ImageNet [64 × 64]
Methods M=500 M=1000 M=2000 M=5000 M=500 M=1000 M=2000 M=5000

AQM (δ = 1) 9.76 ± 0.9 9.54 ± 1.1 10.03 ± 1.1 10.53 ± 1.7 N/A N/A N/A N/A
ER-ACE++ 15.31 ± 1.0 18.49 ± 0.8 21.96 ± 0.7 27.23 ± 0.7 11.54 ± 0.7 14.62 ± 0.7 17.42 ± 0.8 20.81 ± 1.3

SFEC++ 17.26 ± 1.0 20.60 ± 1.1 24.60 ± 0.8 26.75 ± 0.9 14.94 ± 0.7 18.06 ± 1.0 20.75 ± 1.1 22.27 ± 0.9
MRDC (δ = 5/3) 16.27 ± 0.6 16.24 ± 1.8 16.74 ± 1.8 17.11 ± 1.4 11.69 ± 0.7 12.11 ± 1.3 12.42 ± 1.0 11.97 ± 1.0

ER-ACE++ 15.34 ± 1.0 18.58 ± 0.8 21.98 ± 0.7 27.34 ± 0.7 11.58 ± 0.7 14.73 ± 0.6 17.56 ± 0.8 20.93 ± 1.3
SFEC++ 17.33± 1.0 20.66± 1.1 24.64 ± 0.8 26.86 ± 0.9 15.06 ± 0.7 18.21 ± 1.0 20.93 ± 1.1 22.65 ± 1.3

CIM (δ = 5) N/A N/A N/A N/A 9.11 ± 0.6 7.24 ± 0.5 7.89 ± 1.1 8.34 ± 1.2
ER-ACE++ 15.52 ± 0.8 18.62 ± 0.8 22.17 ± 0.5 27.21 ± 0.9 12.37 ± 0.6 15.41 ± 0.5 18.83 ± 0.7 22.36 ± 1.5

SFEC++ 17.41 ± 0.4 20.91 ± 0.7 25.20 ± 1.0 28.43 ± 0.7 15.05 ± 0.7 19.14 ± 0.7 21.99 ± 0.8 23.18 ± 1.7

Table 3: Final average accuracy (higher is better) under the slow streaming scenario. ER-ACE and SFEC performs multiple
gradient updates when other methods compress images, which are ER-ACE++ and SFEC++, respectively. The additional delay
of each method is denoted as a δ, and the best scores are in boldface. All the results are reported as an average of 10 runs.

Ak =
1

k

k∑
i=1

aik (8)

5.2 Results and Analyses
Fast streaming scenario Table 2 summarizes the results
of CIFAR-100 and Mini-ImageNet benchmark dataset in the
fast streaming scenario. As shown in the table, we observe
performance degradation from other methods as they cause
critical computation overheads, resulting in the failure to
capture the entire stream data. On the contrary, SFEC con-
sistently improves the baseline, ER-ACE, by a significant
margin. Specifically, SFEC outperforms the baseline 1.87%
and 2.61% on CIFAR-100 and Mini-ImageNet, respectively.
Notably, SFEC achieves more accuracy gain on the more
complex dataset, Mini-ImageNet. In contrast, all previous
compression methods, including naive JPEG, exhibit a de-
crease in accuracy under the fast streaming scenario due to
the additional complexity and compression defects.

Slow streaming scenario Table 3 reports the final aver-
age accuracy of the exemplar compression methods and the
baseline. We have the following observation on the slow
streaming experiments. 1) MRDC surpasses the baseline in
the fast streaming scenario at M = 500. However, MRDC
downgrades the baseline model performance at all different
memory buffer sizes even without delay, indicating JPEG

ER-ACE JPEG SFQ CABM CIFAR-100 Mini-ImageNet
" 21.74 ± 0.4 17.41 ± 1.2
" " 19.23 ± 1.0 14.18 ± 3.6
" " " 23.56 ± 0.4 18.27 ± 3.0
" " " " 23.85 ± 1.2 19.50 ± 1.8

Table 4: The contribution of each component in SFEC to the
overall improvement. We report the final average accuracy
on CIFAR-100 and Mini-ImageNet with M = 2000 as an
average of 10 runs.

compression introduces compression artifacts that hinder ef-
fective training despite diverse exemplars. 2) Our framework
mostly shows the improvement with all different settings on
CIFAR-100 and Mini-ImageNet, which implies SFEC effec-
tively mitigates compression defects and simultaneously di-
versifies exemplars.

Ablation study In this study, we split our methodology to
assess the contributions of each component, shown in Table
4. Also, we report the average number of exemplars stored
in the buffer of each compression method in Table 5.

As depicted in Table 4, JPEG compression downgrades
the baseline performance. The accuracy degradation is es-
pecially significant on the more complex dataset, Mini-
ImageNet. JPEG exploits the same quantization table for all
DCT coefficients (i.e., patches). Thus, increasing the number
of DCT coefficients with high resolution results in boosting
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Memory Dataset AQM MRDC CIM SFEC

M = 0.5k
CIFAR-100 9205 1092 N/A 826

Mini-ImageNet N/A 2468 895 1160

M = 1k
CIFAR-100 21205 2191 N/A 1645

Mini-ImageNet N/A 4726 1946 2334

M = 2k
CIFAR-100 39466 4223 N/A 3661

Mini-ImageNet N/A 8385 4081 4638

M = 5k
CIFAR-100 44144 9322 N/A 8371

Mini-ImageNet N/A 14133 9866 10714

Table 5: Averaged number of exemplars stored in the buffer
after the final task on 10 runs. Since SFEC is based on
JPEG, the number of exemplars are similar to MRDC. While
AQM shows outstanding number of encoded exemplars,
CIM stores less number of data compared to SFEC.

(a) Source Image

(b) SFEC (Ours)

(c) MRDC

(d) CIM

Figure 3: Visualization of compression artifacts in RGB
channels (left) and frequency domain (right) of the ‘minia-
ture poodle’ class on Mini-ImageNet.

the accumulation of the quantization error. On the contrary,
Saliency-aware Frequency Quantization (SFQ) enhances
performance on both datasets by leveraging salient frequen-
cies for compression. Moreover, Compression-Aware Buffer
Management (CABM) successfully mitigates JPEG-based
compression artifacts by eliminating the defective images
after compression and shows significant improvement.

Table 5 describes the number of exemplars remaining in
the buffer after the final task. Since SFEC and MRDC are
based on JPEG, the number of exemplars is comparable.
While AQM shows an outstanding number of encoded ex-
emplars, it shows relatively poor performance in streaming
scenarios. CIM stores less data than SFEC. Since the bi-level
optimization is unreliable in the OCIL setting, the saliency
masks obtained from the optimization are large and show
less compression rate.

Artifacts and visualization Figure 3 displays compres-
sion artifacts in the RGB channels and the frequency do-
main. Given that the source image and its spatial frequen-
cies are shown in Figure 3 (a), the reconstructed image and
spatial frequencies post-MRDC compression reveal a loss of
high frequencies located at the corners. CIM causes a loss
of both low and high frequencies due to down-sampling the
majority part of images. In contrast, Figure 3 (b) depicts that
SFEC preserves more RGB and frequency information com-
pared to the recent exemplar compression methods.

Memory Methods CIFAR-100 Mini-ImageNet

M = 0.5k
PCR 22.28 ± 0.6 15.91 ± 0.3

PCR + SFEC 24.07 ± 1.7 18.81 ± 1.0

M = 1k
PCR 24.81 ± 0.5 17.92 ± 0.6

PCR + SFEC 25.98 ± 1.3 19.19 ± 1.2

M = 2k
PCR 26.85 ± 0.8 20.53 ± 1.2

PCR + SFEC 27.94 ± 1.0 21.72 ± 0.7

M = 5k
PCR 29.41 ± 1.0 21.13 ± 1.2

PCR + SFEC 30.48 ± 1.2 22.56 ± 0.7

Table 6: Final average accuracy (higher is better) of the
State-of-the-art OCIL method, PCR (Lin et al. 2023), and
SFEC plugged in PCR. Without considering training com-
plexity, SFEC enhances the performance of PCR in varying
settings. The results are presented as an average of 3 runs.
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Figure 4: The illustration of hyperparameter sensitivity. The
x-axis represents the λ in Equation 3 and quality for JPEG.
The results are the final avearge accuracy, as an average of 3
runs on CIFAR-100 at M = 2000.

Plugging in the State-of-the-art As SFEC requires mini-
mal overhead and does not necessitate modifications to other
continual learning methods, we integrate SFEC in the State-
of-the-art (SOTA) OCIL frameworks, such as PCR. (Lin
et al. 2023). Table 6 shows the averaged final accuracy of
3 runs. As depicted in our experiment, SFEC achieves per-
formance improvements with PCR, indicating that SFEC is
a promising option for enhancing the performance of other
OCIL methods.

Hyperparameter sensitivity Figure 4 demonstrates the
hyperparameter sensitivity of the proposed method, SFEC
and JPEG. While the final accuracy using JPEG compres-
sion significantly varies depending on a quality level, SFEC
shows consistent performance despite variations in λ. There-
fore, additional forward and/or backward passes for optimiz-
ing λ are redundant in our experiments.

6 Conclusion
We present Salient Frequency-aware Exemplar Compres-
sion (SFEC) framework. SFEC allows for storing more
representative exemplars within a limited capacity, with a
minimal computational overhead. We show SFEC outper-
forms various exemplar compression methods in resource-
constrained streaming scenarios.

17901



Acknowledgments
This research was supported by the MSIT(Ministry of Sci-
ence and ICT), Korea, under the ITRC(Information Tech-
nology Research Center) support program(IITP-2024-RS-
2023-00258649, 90%) supervised by the IITP(Institute for
Information & Communications Technology Planning &
Evaluation). Especially, all of the experiments in this paper
was conducted under the support of MSIT support program
supervised by IITP. Also, this paper was result of the re-
search project supported by SK hynix Inc. Specifically, the
implementation of the research idea was proceeded with the
support of SK hynix Inc. We would like to thank Minsoo
Kang and Yujin Kim for their involvement in this project.

References
Abello, A. A.; Hirata, R.; and Wang, Z. 2021. Dissecting
the high-frequency bias in convolutional neural networks. In
CVPRW.
Achanta, R.; Hemami, S.; Estrada, F.; and Susstrunk, S.
2009. Frequency-tuned salient region detection. In 2009
IEEE conference on computer vision and pattern recogni-
tion, 1597–1604. IEEE.
Ahn, H.; Kwak, J.; Lim, S.; Hyeonsu Bang, H. K.; and
Moon, T. 2021. Ss-il: Separated softmax for incremental
learning. In ICCV, 844–853.
Aljundi, R.; Belilovsky, E.; Tuytelaars, T.; Laurent Charlin,
M. C.; Lin, M.; and PageCaccia, L. 2019a. Online contin-
ual learning with maximal interfered retrieval. In NeurIPS,
11849–11860.
Aljundi, R.; Lin, M.; Goujaud, B.; and Bengio, Y. 2019b.
Gradient based sample selection for online continual learn-
ing. In NeurIPS.
Buzzega, P.; Boschini, M.; Porrello, A.; Abati, D.; and
Calderara, S. 2020. Dark experience for general continual
learning: a strong, simple baseline. In NeurIPS.
Caccia, L.; Aljundi, R.; Asadi, N.; Tuytelaars, T.; Pineau, J.;
and Belilovsky, E. 2022. New insights on reducing abrupt
representation change in online continual learning. In ICLR.
Caccia, L.; Belilovsky, E.; Caccia, M.; and Pineau, J. 2020.
Online learned continual compression with adaptive quanti-
zation modules. In ICML, 1240–1250.
Chaudhry, A.; Ranzato, M.; Rohrbach, M.; and Elhoseiny,
M. 2018. Efficient lifelong learning with a-gem. arXiv
preprint arXiv:1812.00420.
Chen, G.; Peixi Peng, L. M.; Li, J.; Du, L.; and Tian, Y.
2021. Amplitude-phase recombination: Rethinking robust-
ness of convolutional neural networks in frequency domain.
In ICCV.
Chen, Y.; Ren, Q.; and Yan, J. 2022. Rethinking and Im-
proving Robustness of Convolutional Neural Networks: a
Shapley Value-based Approach in Frequency Domain. In
NeurIPS.
Gholami, A.; Yao, Z.; Kim, S.; Hooper, C.; Mahoney, M. W.;
and Keutzer, K. 2024. AI and memory wall. IEEE Micro.

Ghunaim, Y.; Bibi, A.; Alhamoud, K.; Alfarra, M.; Ham-
moud, H. A. A. K.; Prabhu, A.; Torr, P. H.; and Ghanem, B.
2023. Real-time evaluation in online continual learning: A
new hope. In CVPR, 11888–11897.
Gu, Y.; Yang, X.; Wei, K.; and Deng, C. 2022. Online class-
incremental continual learning via dual view consistency. In
CVPR.
Guo, Y.; Liu, B.; and Zhao, D. 2022. Online continual learn-
ing through mutual information maximization. In ICML,
8109–8126.
Ha, M.; Ryu, J.; Choi, J.; Ko, K.; Kim, S.; Hyun, S.;
Moon, D.; Koh, B.; Lee, H.; Kim, M.; Kim, H.; and Park,
K. 2023. Dynamic Capacity Service for Improving CXL
Pooled Memory Efficiency. IEEE Micro, 43(2): 39–47.
Hou, X.; Harel, J.; and Koch, C. 2011. Image signature:
Highlighting sparse salient regions. IEEE transactions on
pattern analysis and machine intelligence, 34(1): 194–201.
Hou, X.; and Zhang, L. 2007. Saliency detection: A spectral
residual approach. In 2007 IEEE Conference on computer
vision and pattern recognition, 1–8. Ieee.
Itti, L.; Koch, C.; and Niebur, E. 1998. A model of saliency-
based visual attention for rapid scene analysis. IEEE
Transactions on pattern analysis and machine intelligence,
20(11): 1254–1259.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
Lange, D.; Matthias; Aljundi, R.; Masana, M.; Parisot, S.;
Jia, X.; Leonardis, A.; Slabaugh, G.; and Tuytelaars, T.
2021. A continual learning survey: Defying forgetting in
classification tasks. In IEEE TPAMI, 3365–3385.
Li, J.; Duan, L.-Y.; Chen, X.; Huang, T.; and Tian, Y. 2015.
Finding the secret of image saliency in the frequency do-
main. IEEE transactions on pattern analysis and machine
intelligence, 37(12): 2428–2440.
Lin, H.; Zhang, B.; Feng, S.; Li, X.; and Ye, Y. 2023.
PCR: Proxy-based Contrastive Replay for Online Class-
Incremental Continual Learning. In CVPR.
Liu, B. 2020. Learning on the job: Online lifelong and con-
tinual learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, 13544–13549.
Luo, Z.; Liu, Y.; Schiele, B.; and Sun, Q. 2023. Class-
incremental exemplar compression for class-incremental
learning. In CVPR, 11371–11380.
Lv, B.; and Zhu, Z. 2021. Implicit bias of adversarial train-
ing for deep neural networks. In International Conference
on Learning Representations.
Ma, X.; Jeong, S.; Zhang, M.; Wang, D.; Choi, J.; and Jeon,
M. 2023. Cost-effective on-device continual learning over
memory hierarchy with Miro. In Proceedings of the 29th
Annual International Conference on Mobile Computing and
Networking, 1–15.
Mai, Z.; Li, R.; Jeong, J.; Quispe, D.; Kim, H.; and Sanner,
S. 2022. Online continual learning in image classification:
An empirical survey. Neurocomputing, 469(1): 28–51.

17902



McCloskey, M.; and Cohen, N. J. 1989. Catastrophic in-
terference in connectionist networks: The sequential learn-
ing problem. Psychology of learning and motivation, 24(1):
109–165.

Prabhu, A.; Al Kader Hammoud, H. A.; Dokania, P. K.; Torr,
P. H.; Lim, S.-N.; Ghanem, B.; and Bibi, A. 2023. Compu-
tationally budgeted continual learning: What does matter?
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 3698–3707.

Rebuffi, S.-A.; Kolesnikov, A.; Sperl, G.; and Lampert, C. H.
2017. ICaRL: Incremental classifier and representation
learning. In CVPR, 2001–2010.

Rolnick, D.; Ahuja, A.; Schwarz, J.; Lillicrap, T.; and
Wayne, G. 2019. Experience replay for continual learning.
In NeurIPS.

Samsung. 2024. Samsung CXL Solutions – CMM-H.

Schauerte, B.; and Stiefelhagen, R. 2012. Quaternion-based
spectral saliency detection for eye fixation prediction. In
Computer Vision–ECCV 2012: 12th European Conference
on Computer Vision, Florence, Italy, October 7-13, 2012,
Proceedings, Part II 12, 116–129. Springer.

Seo, M.; Koh, H.; and Choi, J. 2024. Budgeted Online Con-
tinual Learning by Adaptive Layer Freezing and Frequency-
based Sampling.

Shrikumar, A.; Greenside, P.; and Kundaje, A. 2017. Learn-
ing important features through propagating activation dif-
ferences. In International conference on machine learning,
3145–3153. PMLR.

Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2014. Deep
inside convolutional networks: Visualising image classifica-
tion models and saliency maps. In ICLRW.

SK hynix. 2023. HMSDK Github. https://github.com/
skhynix/hmsdk.

SK hynix. 2024. SK hynix CXL Solutions – CMM-DDR5 .

Tuba, M.; and Bacanin, N. 2014. JPEG quantization ta-
bles selection by the firefly algorithm. In 2014 Interna-
tional Conference on Multimedia Computing and Systems
(ICMCS), 153–158. IEEE.

Vinyals, O.; Blundell, C.; Lillicrap, T.; and Wierstra, D.
2016. Matching networks for one shot learning. In NeurIPS.

Vitter, J. S. 1985. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS), 11(1): 37–
57.

Wallace, G. K. 1992. The jpeg still picture compression stan-
dard. IEEE Transactions on Consumer Electronics, 38(18-
34): 11888–11897.

Wang, L.; Lu, H.; Ruan, X.; and Yang, M.-H. 2015. Deep
networks for saliency detection via local estimation and
global search. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 3183–3192.

Wang, L.; Zhang, X.; Su, H.; and Zhu, J. 2023a. A compre-
hensive survey of continual learning: Theory, method and
application. arXiv preprint, arXiv:2302.00487.

Wang, L.; Zhang, X.; Yang, K.; Longhui Yu, C. L.; Hong,
L.; Zhang, S.; Zhenguo Li, Y. Z.; and Zhu, J. 2022. Mem-
ory replay with data compression for continual learning. In
ICLR.
Wang, S.; Veldhuis, R.; Brune, C.; and Strisciuglio, N.
2023b. What do neural networks learn in image classifi-
cation? A frequency shortcut perspective. In ICCV.
Xie, X.; and Kyu-Han, K. 2019. Source Compression with
Bounded DNN Perception Loss for IoT Edge Computer Vi-
sion. In In The 25th Annual International Conference on
Mobile Computing and Networking., 1–16.
Xie, X.; Zhou, N.; Zhu, W.; and Liu, J. 2022. Bandwidth-
Aware Adaptive Codec for DNN Inference Offloading in
IoT. In ECCV, 88–104.
Zhang, G.; Zhang, Y.; Zhang, T.; Li, B.; and Pu, S.
2023. PHA: Patch-Wise High-Frequency Augmentation for
Transformer-Based Person Re-Identification. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 14133–14142.
Zhang, W.; Mohamed, Y.; Ghanem, B.; Torr, P. H.; Bibi, A.;
and Elhoseiny, M. 2024. Continual learning on a diet: Learn-
ing from sparsely labeled streams under constrained compu-
tation. arXiv preprint arXiv:2404.12766.

17903


