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Abstract—Deep Neural Network (DNN) training demands
large memory capacities that exceed the limits of current GPU
onboard memory. Expanding GPU memory with SSDs is a
cost-effective approach. However, the low bandwidth of SSDs
introduces severe performance bottlenecks in data management,
particularly for Unified Virtual Memory (UVM)-based systems.
The default on-demand migration mechanism in UVM causes
frequent page faults and stalls, exacerbated by memory oversub-
scription and eviction processes along the critical path. To address
these challenges, this paper proposes Memory Oversubscription-
aware Scheduling for Tensor Migration (MOST), a software
framework designed to improve data migration in UVM environ-
ments. MOST profiles memory access behavior and quantifies the
impact of memory oversubscription stalls and schedules tensor
migrations to minimize overall training time. With the profiling
results, MOST executes newly designed pre-eviction and prefetch-
ing instructions within DNN kernel code. MOST effectively selects
and migrates tensors that can mitigate memory oversubscription
stalls, thus reducing training time. Our evaluation shows that
MOST achieves an average speedup of 22.9% and 12.8% over
state-of-the-art techniques, DeepUM and G10, respectively.

I. INTRODUCTION

Deep Neural Network (DNN) training continues to push the
limits of GPU off-chip memory capacity due to its exponential
scaling [1], [2]. Prior work has explored expanding GPU
memory with host DRAM, but this approach is less viable due
to the end of DRAM scaling [3], [4]. A promising alternative is
to leverage Solid State Drives (SSDs) to expand limited GPU
off-chip memory. SSDs offer scalable capacity at a lower cost
than DRAM.

Unified Virtual Memory (UVM) simplifies memory man-
agement by enabling user-transparent data migration [4], [5].
While UVM improves programmability, the use of UVM
causes substantial delays in training time [3], [4]. The on-
demand migration of UVM often incurs page faults and high
latency, primarily due to limited SSD bandwidth. If GPU off-
chip memory becomes fully utilized, memory oversubscription
occurs, prompting UVM to evict existing GPU memory pages
before loading new data [6]. Such evictions lie on the critical
path of kernel execution. Since the memory footprints of large
DNNs often exceed the capacity of GPU memory, training
large models suffers from frequent stalls caused by memory
oversubscription [6].

Prior work has introduced prefetching and pre-eviction
techniques to hide data transfer latency over limited SSD
bandwidth and to alleviate memory oversubscription stalls
[3], [4], [7]. Prior work has migrated a tensor only if its
transfer time is shorter than the interval before the data is
reused (i.e., the reuse interval), so that prefetching completes
in time [4]. However, under constrained SSD bandwidth, this

scheduling policy fails to migrate large tensors due to their
long transfer times. As such, large tensors remain in GPU
off-chip memory, rapidly exhausting available capacity and
causing memory oversubscription, which in turn slows down
training. Therefore, despite the benefits of prefetching and pre-
eviction, memory oversubscription stalls remain a significant
barrier to the efficient training of emerging DNNs.

In this paper, we propose the Memory Oversubscription-
aware Scheduling for Tensor Migration (MOST) software
framework. The key idea behind MOST is to reduce mem-
ory oversubscription stalls by scheduling pre-eviction and
prefetching of large tensors based on a cost-benefit analysis of
stall reduction versus prefetch delay. Unlike prior work, MOST
enables pre-eviction of large tensors even if their transfer
time exceeds the reuse interval. However, in such cases,
prefetching may not complete in time, potentially delaying
the corresponding kernel execution. To balance this trade-off,
MOST estimates the reduction in memory oversubscription
stalls achieved by pre-evicting a tensor, as well as the potential
stalls caused by late prefetching. If the former outweighs
the latter, MOST schedules the tensor for pre-eviction and
prefetching.

We compare the performance of MOST against the baseline
UVM and state-of-the-art scheduling techniques with three
transformer-based models [8]–[10]. In our evaluation, MOST
reduces memory oversubscription stalls by 23.7% on average
over the state-of-the-art technique, DeepUM and G10 [4],
[7]. MOST shows performance improvement of 22.9% over
DeepUM and 12.8% over G10, which results from this be-
havior.

II. WHY MOST?

Despite advancements in GPU performance, the available
on-board memory remains constrained by technological bar-
riers [2]. Although prior work has utilized host DRAM to
scale GPU memory, DRAM is insufficient to accommodate
the memory footprints of emerging DNNs due to the end of
DRAM scaling [3]–[5], [7], [11].

Leveraging SSDs to expand off-chip memory shows
promise due to the scalability of SSDs. However, expanding
GPU memory with SSDs using UVM poses significant chal-
lenges due to low SSD bandwidth, particularly in DNNs. UVM
relies on on-demand migration as its default data transfer
mechanism [5]. If a GPU accesses a page on an SSD, the
system waits until the data is fetched, which is time-consuming
due to the low SSD bandwidth.

Moreover, if GPU off-chip memory is full, UVM evicts
pages before fetching new data [5]. On-demand paging and
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TABLE I
SYSTEM CONFIGURATIONS

Platform NVIDIA Geforce RTX 4090
GPU Memory 24 GB GDDR6X

Page Size 4 KB
Page Fault Handling Latency 45 µs

Page Fault Batch 256
Interconnect PCIe Gen 5

SSD Capacity 2 TB
DNN Models BERT-Base ViT-Base OPT-1.3B

Number of Parameters 110M 86M 1.3B
Batch Size 512, 1024 2048, 4096 128, 256
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Fig. 1. Training time breakdown for the three architectures. The proportion
of memory oversubscription stalls accounts for 43.7% of the total execution
time in UVM, 38.5% in DeepUM, 36.7% in G10, respectively.

eviction mechanisms triggered by memory oversubscription
share the page fault handling process managed by the UVM
driver. This process operates at the granularity of a 2 MB
Virtual Address Block (VABlock), which serves as the mem-
ory allocation unit within UVM, allowing batched page fault
handling [6], [12]. If a page fault occurs, Streaming Multi-
processors (SMs) and micro Translation Lookaside Buffers
(TLBs) generate a fault signal. GPU Memory Management
Unit (GMMU) interrupts UVM driver and Direct Memory
Access (DMA) engine migrates pages. The page fault handling
for a 256-page VABlock takes at least 150µs, causing increased
eviction stalls [6].

Prior work has introduced prefetching and pre-eviction
algorithms to reduce stalls caused by data transfers [3], [4], [7].
Prefetching hides the long latency of SSD accesses by proac-
tively fetching data for upcoming kernels, while pre-eviction
alleviates memory oversubscription by freeing up space in
the GPU off-chip memory for subsequent kernels. Prior work
has proposed G10, an advanced pre-eviction technique that
only evicts tensors whose transfer times are shorter than their
inactive intervals to mitigate transfer delays [4]. Although the
prior work has improved training performance, the memory
oversubscription stalls remain a bottleneck.

We analyze the performance impact of memory oversub-
scription during the training of BERT, ViT and OPT-1.3B by
varying batch sizes. Table I describes the detailed configu-
rations. We use the UVM simulator proposed by G10 [4],
[8], [13]. We consider UVM as a baseline, DeepUM and
G10 as the state-of-the-art solutions employing pre-eviction
and prefetching scheduling [4], [5], [7]. We define memory
oversubscription stalls as the proportion of cumulative stall
cycles resulting from eviction due to memory oversubscription.

Figure 1 shows that stalls caused by memory oversubscrip-
tion significantly delay training time. In this figure, ‘stall’
refers to those not caused by memory oversubscription, such
as latency from on-demand migrations. The term ‘compute’
denotes the kernel execution time during the workload. Our
analysis shows that the UVM baseline suffers from memory
oversubscription stalls, which account for 43.7% of the total
execution time. DeepUM and G10 reduce both the overall
training time and the severity of memory oversubscription
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Fig. 2. Key idea of MOST. MOST schedules pre-eviction and prefetching
for the tensors, if the eviction can reduce memory oversubscription stalls.

stalls through prefetching and pre-eviction scheduling. How-
ever, the proportion of execution time still spent on memory
oversubscription stalls 38.5% for DeepUM and 36.7% for G10.

Even with an advanced pre-eviction policy, G10 migrates
only small tensors under low SSD bandwidth. This behavior
results in memory oversubscription. G10 schedules a tensor
for migration only if its transfer time is shorter than the reuse
interval to ensure timely prefetching. Under constrained SSD
bandwidth, large tensors typically require longer transfer times
than their reuse intervals, so G10 does not migrate them. As a
result, large tensors stay in GPU off-chip memory, exhausting
available capacity and causing memory oversubscription stalls
that significantly degrade system performance.

III. MOST
To address the challenges explained in Section II, we

propose the Memory Oversubscription-aware Scheduling for
Tensor Migration (MOST) framework. Figure 2 depicts the key
idea of MOST. MOST incorporates memory oversubscription
stall estimation into its migration scheduling policy, evaluating
the impact of each candidate migration on system-level stall
reduction. Unlike prior work, which skips the migration of
large tensors whose transfer time exceeds their reuse interval
as shown in Figure 2a, MOST selectively schedules such mi-
grations if they help reduce overall memory oversubscription
stalls (Figure 2b). To make this decision, MOST estimates both
the benefit of reducing oversubscription stalls through pre-
eviction and the potential penalty from delayed prefetching.
MOST uses the reuse interval of each tensor, which is defined
as the time between successive uses, as a reference metric
for scheduling. By comparing the estimated reduction in over-
subscription stalls against the cost of late prefetching, MOST
prioritizes migration decisions that reduce overall training time
under limited SSD bandwidth.
A. MOST Scheduling Algorithm

Figure 3 describes the flowchart of MOST scheduling
algorithm. MOST schedules pre-eviction and prefetching by
quantifying the memory oversubscription stalls. The MOST
scheduling algorithm first selects tensors based on the eviction
benefit, B, defined as follows:

B = S × I (1)

where S and I are the tensor size and the inactive interval of
the tensor, respectively.
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Fig. 3. Flowchart of the MOST scheduling algorithm.

DNN Models 

// Code example
cudaMallocManaged(vaddr1);
cudaMallocManaged(vaddr2);
cublasSgemm<<<…>>>;

cudaMemPrefetchAsync(vaddr1, ssdID); // Pre-eviction
cudaMemPrefetchAsync(vaddr3, gpuID); // Prefetch

cudnnConvolutionForward<<<…>>>;

DNN Graphs

Kernel ProfileTensor Profile
DNN Profiler Tensor ID Size Interval …

0 8192 0-9

1 256 1-3

Kernel ID Input Time …

0 0, 1 2.54

1 2, 3 40.79
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Fig. 4. Block diagram of the MOST framework.

For timely prefetching, we define Psafe, the prefetching safe
time. Psafe indicates the time at which prefetching should
occur so that the data is available before kernel execution.
Psafe is calculated by subtracting the fetching latency from the
point at which the tensor is used. Based on the order of tensors
with the highest eviction benefit, the scheduler in MOST
determines Psafe to accurately compute prefetching delay
(Pdelay), the additional time consumed due to late prefetching
beyond Psafe.

If memory oversubscription does not occur at Psafe, the
scheduler performs pre-eviction immediately after tensor usage
and schedules prefetching at Psafe. In this case, GPU memory
gains the eviction benefit corresponding to the tensor without
causing memory oversubscription. Otherwise, the scheduler
calculates the oversubscription stalls, Oversub stall. We de-
fine Oversub stall as the sum of eviction latency incurred
by memory oversubscription for executing subsequent kernels
until a prefetching performs. Also, MOST calculates Pdelay if
prefetching starts later than Psafe. MOST then identifies the
kernel index that shows the lowest total stall, which is the sum
of Oversub stall and Pdelay. If the total stall is greater than
zero and Oversub stall exceeds Pdelay, MOST schedules
pre-eviction after accessing the tensor and prefetching at the
corresponding kernel index.
B. Framework Implementation

Figure 4 illustrates the operation of the MOST framework.
The DNN profiler takes the DNN graph extracted from AI
frameworks (e.g., PyTorch, HuggingFace) as input. The DNN
graph contains information about the operations (e.g., addition,
GEMM, GELU, etc.) required for the training workload,
including the input and output tensor sizes for each operation.
The execution time of each kernel can be determined by

profiling each kernel individually. The DNN graph enables
the framework to identify the kernels in the workload, the
input and output tensor sizes for each kernel, the execution
time of each kernel, and the history of GPU off-chip memory
usage during kernel execution. As a result, the DNN profiler
generates a kernel profile that includes detailed information
about each kernel. Additionally, the DNN profiler creates a
tensor profile, which captures information about the tensors
used by each kernel, such as their sizes and inactive intervals.

Based on the profiling results, MOST schedules pre-eviction
and prefetching for tensors. The scheduling algorithm iterates
through all tensors and estimates the benefit of eviction. The
scheduling algorithm then schedules evictions in descending
order of benefit, while accounting for the latency caused
by memory oversubscription and prefetching. After schedul-
ing, MOST modifies the target workload code by inserting
pre-eviction and prefetching instructions. Since the CUDA
runtime API (cudaMemPrefetchAsync) supports only host-
to-GPU transfers, we implement custom pre-eviction and
prefetching APIs using NVIDIA GPUDirect Storage (GDS)
APIs (e.g., cuFileRead, cuFileWrite). The customized API
hooks into cudaMemPrefetchAsync and transparently redirects
data transfers between SSD and GPU through GDS.
C. Overhead Analysis

MOST profiling requires executing a single training iteration
on each workload to profile kernel execution time and tensor
lifetime. Also, MOST scheduling consumes less time than
profiling. Thus, MOST introduces negligible overhead relative
to the overall training time, since training typically involves
hundreds of thousands of iterations [9]. As an example, train-
ing ViT-Base on ImageNet 21K (14 million images) requires
90 epochs, with each epoch consisting of 3,467 iterations at
a batch size of 4,096, totaling approximately 311,949 training
iterations (90 × 3,467) [9]. Therefore, the combined overhead
of profiling and scheduling accounts for less than 0.001% of
the total workload execution time.

IV. EVALUATION

A. Experimental Setup

We evaluate MOST with three transformer-based DNN
models, BERT, ViT, and OPT-1.3B [8]–[10]. We compare
MOST against the default UVM (used as a baseline) and the
state-of-the-art scheduling algorithms DeepUM and G10 [4],
[5], [7]. Since both DeepUM and G10 utilize host DRAM,
we modify them to use only SSD storage. We use the UVM
simulator proposed by G10, which is based on UVMSmart
and GPGPU-Sim [4], [13], [14]. The simulator models GPU
page fault handling, data migration, and address translation.
The system specification for simulation is identical to those in
Table I.

B. Results

Speedup: Figure 5 illustrates the speedup comparison
between MOST and prior work. MOST achieves an average
speedup of 2.6× over the baseline UVM, with speedup gains
of 22.9% and 12.8% over DeepUM and G10, respectively. The
correlated prefetching of DeepUM often struggles to predict
accurate data to be used and accurate time for prefetching
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Fig. 5. Speedup comparison between prior work and MOST. MOST achieves
22.9% and 12.8% speedup over DeepUM and G10, respectively.
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Fig. 6. The comparison of the memory oversubscription stalls. MOST reduces
memory oversubscription stalls by 70.8% compared to UVM.

while G10 prefetches an accurate tensor in time by lever-
aging the workload profile. However, G10 incurs memory
oversubscription as it does not consider explicit memory
oversubscription stalls for scheduling. On the contrary, MOST
reduces memory oversubscription stalls and achieves speedup
over prior work.

Memory oversubscription stalls: As shown in Figure 6,
MOST reduces memory oversubscription stalls by 70.8% com-
pared to the baseline. Moreover, MOST achieves a reduction of
the stalls by 27.5% and 20.8% on average over DeepUM and
G10, respectively. By quantifying the benefit from reducing
memory oversubscription stalls, MOST successfully migrates
tensors that can reduce memory oversubscription stalls. Es-
pecially, pre-evicting large tensors helps alleviating memory
oversubscription stalls. According to our analysis, MOST pre-
evicts tensors that are on average 4.3× larger than those of
G10, which contributes to a substantial reduction in memory
oversubscription stalls.

C. Discussion

Impact of GPU Count: We conduct experiments in
multi-GPU settings with a 900 GB/s NVLink bandwidth.
Figure 7 shows the experimental results. MOST achieves
average speedups of 50.3% and 12.0% over DeepUM and G10,
respectively. In multi-GPU training using UVM with SSDs,
tensor fetching begins from the SSDs. The GPU that initially
receives a tensor from the SSD scatters it to other GPUs
via NVLink. After kernel execution, a reduction operation
merges the scattered tensors into a single GPU for storage.
This behavior reduces kernel execution time through paral-
lelism, while increasing data transfer time due to inter-GPU
communication. As data transfer becomes a more significant
bottleneck in multi-GPU training, the performance benefits
of pre-eviction and prefetching become more substantial than
single-GPU training.

Effect of SSD Bandwidth on Performance: MOST ef-
fectively reduces memory oversubscription stalls, particularly
under realistic SSD bandwidths. Figure 8 presents the speedup
of MOST compared to DeepUM and G10 across a range
of realistic SSD bandwidths (3.2∼25.6 GB/s). On average,
MOST outperforms DeepUM and G10 by 20.0% and 9.9%,
respectively. Even under high SSD bandwidth, G10 fails to
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Fig. 7. Speedup comparison between MOST and prior work while varying
number of GPUs. All the experimental results are normalized to the perfor-
mance of DeepUM.
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Fig. 8. Speedup comparison between MOST and prior work at varying SSD
bandwidths. All the experimental results are normalized to the performance
of DeepUM.

schedule the migration of large tensors, whereas MOST pre-
evicts large tensors and effectively reduces training time.

Performance Sensitivity to SSD Latency: We conduct
experiments by varying SSD latency from 5 µs to 20 µs
and observe that MOST achieves a 10∼12% speedup over
G10 across all latency configurations. During DNN training,
large tensors composed of sequential pages are migrated.
This sequential access pattern enables effective pipelining and
overlapping of SSD latency, including FTL translation. Thus,
SSD latency has a smaller impact on performance than SSD
bandwidth.

V. CONCLUSION

We introduce the MOST framework that schedules pre-
eviction and prefetching for tensors in UVM-based GPU
systems using SSDs. MOST utilizes the memory oversub-
scription stalls for migration scheduling. We show that MOST
outperforms the state-of-the-art migration scheduling methods
by an average of 16.2%.
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