
Kubism: Disassembling and Reassembling K-Means
Clustering for Mobile Heterogeneous Platforms

Seondeok Kim
∗

Korea University

Seoul, Republic of Korea

seondeok0312@korea.ac.kr

Sangun Choi
∗

Korea University

Seoul, Republic of Korea

sangun_choi@korea.ac.kr

Jaebeom Jeon

Korea University

Seoul, Republic of Korea

414dragon@korea.ac.kr

Junsu Kim

Korea University

Seoul, Republic of Korea

j0807s@korea.ac.kr

Minseong Gil

Korea University

Seoul, Republic of Korea

ms7859@korea.ac.kr

Jaehyeok Ryu

Korea University

Seoul, Republic of Korea

ryoujh03@korea.ac.kr

Yunho Oh

Korea University

Seoul, Republic of Korea

yunho_oh@korea.ac.kr

Abstract
K-means clustering is widely used in applications such as

classification, recommendation, and image processing for its

simplicity and efficiency. While often deployed on servers,

it is also used on mobile platforms for tasks like sensor data

analysis. However, mobile devices face tight hardware and

energy constraints, making efficient execution challenging.

Prior parallel K-means approaches still suffer from GPU un-

derutilization due to warp divergence and leave CPUs idle.

This paper proposes Kubism, a novel software technique

that disassembles and reassembles a K-means clustering al-

gorithm to maximize CPU and GPU resource utilization on

mobile platforms. Kubism incorporates several key strate-

gies, including reordering operations to minimize unneces-

sary work, ensuring balanced workloads across processing

units to avoid idle time, dynamically adjusting task execution

based on real-time performance metrics, and distributing

computation efficiently between the CPU and GPU. These

methods synergistically improve performance by reducing

idle periods and optimizing the use of hardware resources.

In our evaluation on the NVIDIA Jetson Orin AGX platform,

Kubism achieves up to a 2.65× speedup in individual cluster-

ing iterations and an average 1.23× improvement in overall

end-to-end execution time compared to prior work.

∗
Seondeok Kim and Sangun Choi contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

LCTES ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1921-9/25/06

https://doi.org/10.1145/3735452.3735537

CCS Concepts: •Computer systems organization→ Em-
bedded software.

Keywords: K-means Clustering, heterogeneous computing,

mobile platforms

ACM Reference Format:
Seondeok Kim, Sangun Choi, Jaebeom Jeon, Junsu Kim, Minseong

Gil, Jaehyeok Ryu, and Yunho Oh. 2025. Kubism: Disassembling

and Reassembling K-Means Clustering for Mobile Heterogeneous

Platforms. In Proceedings of the 26th ACM SIGPLAN/SIGBED In-
ternational Conference on Languages, Compilers, and Tools for Em-
bedded Systems (LCTES ’25), June 16–17, 2025, Seoul, Republic of
Korea. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3735452.3735537

1 Introduction
K-means clustering is widely used across applications, such

as data classification, recommendation systems, and image

processing [5, 12, 34]. The goal of K-means clustering is to

minimize the sum of the squared distance between each

data point and its assigned centroid, thus achieving high

intra-cluster similarity and low inter-cluster similarity [4,

7, 29]. As the number of data points and clusters increases,

the computational and memory requirements for K-means

clustering grow linearly [24].

While K-means clustering is frequently deployed in server

environments, mobile platforms also rely on it for tasks like

sensor data processing. However, mobile platforms face addi-

tional hardware and energy constraints compared to servers.

Moreover, the linear growth of the computational and mem-

ory requirements depending on the data point count results

in significant execution time and energy consumption, mak-

ing K-means clustering execution more challenging. Prior

work has proposed techniques that reduce redundant com-

putations by skipping unnecessary distance calculations and

https://orcid.org/0009-0000-7624-5934
https://orcid.org/0009-0001-5803-361X
https://orcid.org/0009-0009-2947-043X
https://orcid.org/0009-0008-1582-5212
https://orcid.org/0009-0005-8664-9840
https://orcid.org/0009-0000-0210-6181
https://orcid.org/0000-0001-6442-3705
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3735452.3735537
https://doi.org/10.1145/3735452.3735537
https://doi.org/10.1145/3735452.3735537

LCTES ’25, June 16–17, 2025, Seoul, Republic of KoreaSeondeok Kim, Sangun Choi, Jaebeom Jeon, Junsu Kim, Minseong Gil, Jaehyeok Ryu, and Yunho Oh

accelerate a K-means clustering algorithm by leveraging

Graphics Processing Unit (GPU) parallel computing capabil-

ities [11, 33]. However, those software techniques still un-

derutilize hardware resources on mobile platforms equipped

with CPUs and GPUs. In case of a GPU-accelerated Yinyang

K-means clustering algorithm [33], during skipping process,

iterations that are skipped cause the corresponding GPU

threads to become idle. Such behavior occurs warp diver-

gence as no adjustments are made to mitigate this issue in

this technique. Furthermore, as the implementation does not

utilize the CPU, the multicore CPU remains unused.

In this paper, we propose Kubism, a novel software tech-

nique that disassembles and reassembles a K-means cluster-

ing algorithm to efficiently use the hardware resources in

mobile platforms. With the key insights that we mentioned,

Kubism addresses these challenges by balancing workloads

between the CPU and GPU, reducing idle time, and further

improving the parallel processing capabilities of GPUs com-

pared to the prior work.

Inspired by a GPU-accelerated Yinyang K-means algo-

rithm [33], we focus on innovating the local filter algorithm,

which accounts for over 90% of the total execution time. Ku-

bism dynamically adapts the local filter algorithm to the skip

ratio and eliminates unnecessary computations through re-

ordering, warp balancing, and intelligent task partitioning

across mobile GPUs and CPUs, called heterogeneous task dis-
tribution (HETD). The reordering technique performs early

boundary checks, allowing for quick identification of skip-

pable computations. This approach reduces unnecessary

work by avoiding redundant thread executions on the GPU,

helping to preventwarp divergence. Thewarp balancing tech-
nique creates a new GPU kernel for the local filter algorithm,

grouping threads that run active distance calculations into ad-

jacent positions within the kernel, which improves hardware

resource utilization of GPUs. The dynamic skip ratio decision
mechanism optimizes warp balancing based on the skip ra-

tio of each iteration. The heterogeneous platform-aware task
distribution (HETD) technique balances the computational

load between the CPU and GPU, further improving perfor-

mance compared to GPU-only implementations on mobile

platforms. We implement HETD without introducing heavy

data movement overhead between the CPU and GPU by ex-

ploiting page-locked memory allocations, enabling efficient

data sharing.

In our evaluation on the NVIDIA Jetson Orin AGX plat-

form, Kubism achieves up to a 2.65× speedup in individual

clustering iterations compared to the prior GPU-accelerated

Yinyang K-means clustering implementation [33]. Also, Ku-

bism achieves an average 1.23× improvement in overall end-

to-end execution time for complete clustering.

The contributions of this paper are as follows:

• We analyze the behavioral characteristics of a state-of-

the-art K-means clustering algorithm and demonstrate

that its performance can be improved by disassembling

and reassembling the entire workflow.

• We propose Kubism that effectively utilizes both CPU

and GPU resources and increases GPU thread effi-

ciency.

• Our evaluation shows that Kubism achieves up to

a 2.7× speedup in iterations and a 1.2× speedup in

overall execution time compared to the prior GPU-

accelerated K-means clustering implementation.

The rest of this paper is organized as follows. Section 2

explains the challenges that we define. Section 3 presents

Kubism, our proposed solution. Section 4 explains the evalu-

ation methodology and results. Section 5 discusses related

work. Section 6 concludes this paper.

2 Why Kubism?
2.1 K-Means Clustering Algorithms
Clustering algorithms are essential for many data-intensive

applications such as data classification, recommendation

systems, and image processing. K-means clustering is par-

ticularly popular due to its efficiency and simplicity in parti-

tioning data into clusters [3, 11, 15, 16, 33, 35]. The objective

of K-means clustering is to minimize the sum of the squared

distance between each data point and its corresponding clus-

ter centroid, so data points within a cluster exhibit high

similarity to each other while maintaining dissimilarity from

points in other clusters.

As the number of data points and clusters increases, the

computational and memory requirements for K-means clus-

tering grow linearly [24]. This linear growth in computa-

tional and memory needs, depending on the number of data

points, results in significant execution time and energy con-

sumption. To address this challenge, prior work has proposed

novel K-means clustering algorithms utilizing the skipping

mechanism to eliminate redundant computations inherent

in the original K-means clustering [11–14, 24].

In the original K-means clustering, although most data

points retain their cluster assignments during iterations, the

algorithm still performs unnecessary distance calculations

for all data points. To address this challenge, prior work has

proposed the Yinyang K-means clustering algorithm [11].

This algorithm includes a mechanism that skips distance

calculation based on a boundary check so that it reduces

the execution time compared to the original algorithm. The

skipping distance calculation process identifies such data

points using three key values: the upper bound, the lower

bound, and drift for each data point. The upper bound repre-

sents the distance from a data point to its assigned cluster

centroid, while the lower bound is the distance to the nearest

centroid among the other cluster centroids. Drift denotes the

maximum shift of centroids due to updates in each iteration.

If the difference between the lower bound and the drift is

greater than the upper bound, the nearest centroid cannot

Kubism: Disassembling and Reassembling K-Means Clustering for Mobile Heterogeneous Platforms LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

Algorithm 1 Yinyang K-Means Clustering Algorithm

Input: Dataset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛 }, number of clusters 𝑘 , initial centroids𝐶 =

{𝑐1, 𝑐2, . . . , 𝑐𝑘 }
Output: Final cluster centroids𝐶 , cluster assignments for each data point

1: function Yinyang_Kmeans(𝑋 , 𝑘 ,𝐶)

2: // Step 1: Group centroids into groups

3: Group centroids into 𝑖 groups for use in the group filtering step

4: 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑖 }
5:

6: while not converged do
7: // Step 2: Initialization

8: Compute initial upper bound 𝑢𝑏𝑛 for each data point 𝑥𝑛
9: Compute initial lower bound 𝑙𝑏𝑖 using distance to centroids in group 𝑔𝑖
10:

11: // Step 3: Calculate centroid drift

12: Calculates drift for each 𝑐𝑘 and stores maximum drift per 𝑔𝑖
13:

14: // Step 4: Group filter

15: for 𝑑𝑝 = 0 to 𝑛 do // For all data points

16: for 𝑐𝑒𝑛𝑡 = 0 to 𝑖 do // For all groups

17: if group 𝑙𝑏𝑐𝑒𝑛𝑡 is ≥ 𝑢𝑏𝑑𝑝 then
18: Skip distance calculation for 𝑥𝑑𝑝 and entire group 𝑔𝑐𝑒𝑛𝑡
19: end if
20: end for
21: end for
22:

23: // Step 5: Local filter

24: for 𝑑𝑝 = 0 to 𝑛′ do // n’: # of data points passed through group filter

25: for 𝑐𝑒𝑛𝑡 = 0 to 𝑘 do // For all centroids

26: if 𝑙𝑏𝑐𝑒𝑛𝑡 is ≥ 𝑢𝑏𝑑𝑝 then
27: Skip distance calculation for 𝑥𝑑𝑝 and 𝑐𝑐𝑒𝑛𝑡
28: end if
29: end for
30: end for
31:

32: //Step 6: Centroid adjust

33: Adjust position of each 𝑐𝑘
34:

35: end while
36: end function

become the new centroid for the data point, as the distance

to the currently assigned centroid remains shorter despite

the centroid shifts.

Algorithm 1 describes the Yinyang K-means clustering al-

gorithm. Yinyang K-means clustering reduces computational

overhead by implementing a two-step filtering process called

the group filter and the local filter [10]. The group filter first

skips unnecessary distance calculations at the granularity

of centroid groups, and then the local filter eliminates re-

dundant distance calculations within each group. Initially,

centroids are organized into groups, and in the group filter-

ing stage bounds are applied to filter out centroid groups

that do not require additional distance calculations. This ap-

proach efficiently reduces a large number of computations

with only a small number of distance comparisons. After the

group filtering, the algorithm determines the best centroid

within the groups that pass through the filter. Within these

groups, Yinyang K-means clustering applies a local filter

further to skip unnecessary computations.

Both the original K-means clustering and YinyangK-means

clustering algorithms offer opportunities for parallel comput-

ing, which can be leveraged to further enhance their perfor-

mance. Prior work has proposed algorithms that accelerate

both methods using GPUs [18, 33]. By taking advantage of

the massive parallelism offered by GPUs, computations such

as distance calculations and centroid updates are distributed

across many processing cores. Such a behavior results in

substantial improvements in execution time and efficiency

compared to CPU-based implementations. In the case of

Yinyang K-means clustering, prior work has shown that

its GPU-based implementation outperforms the GPU-based

implementation of the original K-means clustering [33].

2.2 K-Means Clustering in Mobile Platforms
Not only servers but also embedded systems often employ K-

means clustering for online tasks such as processing images

generated by sensors. These tasks are important for features

such as image recognition, augmented reality, and environ-

mental sensing [1, 2, 17, 32]. For example, autonomous driv-

ing systems commonly use the K-means clustering algorithm

to analyze sensor data for tasks like lane and object detection

[8, 21]. On mobile platforms, K-means clustering helps with

image detection by automatically determining the sizes and

number of anchor boxes [6, 19, 20]. The algorithm groups

sensor images and configures anchor boxes, removing the

need for manual parameter settings. These applications are

also important for robotics, which rely on image detection

and pattern recognition to process sensor data [22]. Recent

improvements in deep neural networks (DNNs) have made

clustering algorithms even more useful on mobile devices.

Combining K-means clustering with DNNs improves the

performance of data analysis tasks [6, 20].

These applications show that K-means clustering plays a

key role in the wide range of data analytics tasks on embed-

ded systems. K-means clustering improves the processing ca-

pabilities of embedded hardware platforms through efficient

data segmentation and feature extraction while maintain-

ing real-time performance requirements. As the demand for

data analytics tasks on mobile and embedded systems grows,

efficient implementation of K-means clustering is essential

for such resource-constrained hardware platforms.

2.3 Key Challenges of K-Means on Mobile Platforms
Many mobile platforms have been equipped with low-power

GPUs, enabling more efficient execution of K-means clus-

tering by leveraging parallel processing capabilities com-

pared to traditional mobile platforms equipped only with

CPUs. In the case of NVIDIA Jetson, embedded Systems-

on-a-Chip (SoC) consists of both a CPU and a GPU, which

physically share the same SoC DRAM memory to minimize

the cost of host-to-device data transfers [27]. Implementing

K-means clustering on mobile platforms presents unique

challenges due to limited computational resources and en-

ergy constraints. K-means clustering algorithms exhibit com-

putational complexity and memory access operations that

scale linearly with both the number of input data points and

the number of clusters, which leads to substantial increases

in execution time and energy consumption [9, 30, 31].

LCTES ’25, June 16–17, 2025, Seoul, Republic of KoreaSeondeok Kim, Sangun Choi, Jaebeom Jeon, Junsu Kim, Minseong Gil, Jaehyeok Ryu, and Yunho Oh

Figure 1. Visualized example for warp divergence in a warp.

The left side shows the case where the skip ratio is 0. All

threads perform distance calculations, so warp divergence

does not occur. The right side demonstrates the case where

the skip ratio is 0.9. A few threads within a warp perform

computations while the others wait until the calculations

are completed.

Table 1. Experiment Configuration

Platform NVIDIA Jetson Orin AGX

GPU Architecture Ampere architecture

GPU Cores 8 SMs, 1792 CUDA cores, 56 Tensor cores

Max. # of Threads per SM/Block 1536 / 1024

CPU 12-core Arm Cortex-A78AE v8.2

Memory 32 GB LPDDR5, Bandwidth: 204.8 GB/s

The GPU-accelerated Yinyang K-means clustering imple-

mentation proposed by prior work does not take full advan-

tage of the hardware characteristics of embedded GPUs and

CPUs [33]. On the GPU side, some threads perform distance

calculations while others remain idle until the calculations

are complete. Such a behavior is known as warp divergence

[18]. Warp divergence incurs an imbalance in the workload

across threads in a warp. Such an imbalance causes a large

portion of GPU hardware resources to remain idle until the

active threads finish their calculations. Figure 1 represents a

visualized example of warp divergence in Yinyang K-means

clustering. The left side in the example represents the case

where the skip ratio is 0. All threads perform distance calcu-

lations, so warp divergence does not occur. The right side

shows the case where the skip ratio is 0.9. A few threads

within a warp perform distance calculations while the other

threads stall until the calculations are completed.

We conduct experiments to analyze the behavioral impact

of warp divergence in Yinyang K-means clustering on a mo-

bile platform, using the NVIDIA Jetson Orin AGX platform

[27]. We use the source code of the GPU-accelerated Yinyang

K-means clustering algorithm proposed by the prior work

[33]. Detailed system configurations of the NVIDIA Jetson

Orin AGX platform are provided in Table 1. The dataset used

in our experiments contains one million data points with

128 feature dimensions.

We first profile the average active thread per warp metric

during execution using Nsight Compute [25]. This metric

Table 2. Example of the number of active threads sampled

in five iterations.

Iteration Skip Ratio
Number of Active Threads

per Warp
1 0.91 2.84

2 0.60 12.76

3 0.24 24.16

4 0.06 29.96

5 0.01 31.58

Fig 2. Speedup

51

Figure 2. Speedup of Oracle implementation compared to

the GPU-accelerated Yinyang K-means proposed in prior

work. Oracle represents an implementation with minimized

warp divergence. Iterations 1, 17, 18, and 19 exhibit signifi-

cant speedup due to higher skip ratios, with Oracle achieving

at least 5× speedup.

represents the average number of active threads in a warp for

each executed instruction. Nsight Compute calculates it by

dividing the total number of executed instructions across all

threads by the number of instructions executed by the entire

warp. If some threads in a warp remain idle, the metric shows

a low value (e.g., 3). If all threads in the warp are active, the

metric approaches the maximum value of 32.

Table 2 shows the profiling results for the first to fifth

iterations. Due to the warp divergence, the number of active

threads significantly decreases. We observe that the number

of active threads is highly related to the (1 - skip ratio), which

means a ratio of distance calculation for each iteration. Since

the first two iterations exhibit high skip ratios, the number

of active threads per warp is much smaller than 32. As the

first iteration has the highest skip ratio among five iterations,

it exhibits the lowest active threads. In our initial study, 30%

of threads are inactive during the end-to-end execution of

the GPU-accelerated Yinyang K-means clustering.

Figure 2 presents the experimental results of the speedup

depending on the skip ratios for each iteration of the Yinyang

K-means clustering algorithm. For comparison, we imple-

ment an oracular implementation of Yinyang K-means clus-

tering called Oracle, which heuristically eliminates warp

divergence. In this graph, The X-axis shows the correspond-

ing iterations, and the Y-axis shows the speedup per iteration.

Overall, this workload runs 30 iterations. Among all the iter-

ations, the workload runs the original K-means clustering

Kubism: Disassembling and Reassembling K-Means Clustering for Mobile Heterogeneous Platforms LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

algorithm from the first to the third iteration, so we exclude

them from our analysis and show 27 iterations. We measure

the per-iteration speedup of Oracle over the baseline, the

GPU implementation of Yinyang K-means clustering pro-

posed by the prior work [33]. In iterations 1, 17, 18, and 19,

the skip ratio exceeds 0.8, resulting in the Oracle implemen-

tation achieving a speedup of at least 5× compared to the

prior work. Specifically, in iterations 17 and 18, where the

skip ratio surpasses 0.95, the Oracle implementation achieves

a speedup greater than 10×.
On the CPU side, its underutilization is another significant

issue while running K-means clustering on embedded GPUs.

The CPU is only utilized for a limited number of tasks, such

as launching kernels, while the GPU handles the main com-

putational workload.We profile the utilization of the CPUs in

the NVIDIA Jetson Orin AGX platform during the execution

of Yinyang K-means clustering. We use Nsight Systems for

profiling [26]. Profiling results show that the CPU in Jetson

platform remains idle for 98.6% of the total execution time,

highlighting the inefficiency in utilizing available CPUs.

The main challenges identified in implementing K-means

clustering on mobile platforms involve both GPU and CPU

underutilization. On the GPU side, warp divergence caused

by the filtering mechanism incurs significant idle time, as

some threads skip computations while others remain active,

resulting in performance slowdowns. This inefficiency be-

comes critical if the skip ratio is high, causing substantial

execution time increases. Also, the CPU remains idle during

execution, as it is only used for tasks such as kernel launches.

These issues highlight the need for better utilization of both

GPU and CPU to improve performance in mobile platforms.

We make the following observations to resolve this chal-

lenge. K-means clustering works in multiple passes, making

it well-suited for dynamic and adaptive innovations. Its struc-

ture allows for adjustments, like reordering and skipping dis-

tance calculations, without impacting result accuracy. This

iterative and flexible nature of K-means clustering makes it

possible to break down and rebuild the algorithm to better

fit the hardware features of mobile platforms.

The execution time and behavior of K-means clustering

vary depending on the number of data points and the length

of feature vectors. Longer feature vectors also add to the

workload by requiring more resources for each calculation,

which uses up more memory and increases access time. Pro-

cessing large, high-dimensional datasets can strain mobile

or embedded systems and add extra overhead, especially if

tasks are split between the CPU and GPU. Techniques like

page-locked memory allocation can help lower data trans-

fer costs, but an adaptive approach could make things even

more efficient. By adjusting to the demands of the task based

on data size and feature size, adaptive solutions can handle

overhead better.

Fig.4 Overview

76

Clustering Reordering Dynamic Skip Ratio Decision

Warp Balancing (WB)

Heterogeneous Platform-Aware Task Distribution (HETD)

for datapoints and centroids
bound check

distance calculation
endfor

for datapoints and centroids
early bound check

endfor

for datapoints and centroids
distance calculation

endfor

Identify all skipped
calculations

Compute Skip Ratio Apply HETD and/or WB

Thread 0
Thread 1
Thread 2

Thread 31

Warp
Thread 0
Thread 1
Thread 2

Thread 31

Warp

Determine Partitioning Ratio
CPU

GPU

Original Algorithm

Figure 3. Kubism overview.

3 Kubism
3.1 Key Idea of Kubism
To address the challenges discussed in the previous section,

we propose Kubism, a new software approach designed to

improve computational efficiency on mobile heterogeneous

platforms. Unlike traditional methods that do not fully utilize

either the CPUs or GPUs, Kubism takes full advantage of the

parallel processing capabilities of both CPU and GPU.

Inspired by the Yinyang K-means clustering algorithm,

Kubism takes advantage of two key features while running

over multiple iterations. First, we focus on redesigning the

local filter function that accounts for over 90% of the total

execution time. Second, within each iteration, it is possible to

change the order of skipping steps and calculations without

affecting the accuracy of the results. By considering these fac-

tors, we design Kubism by disassembling and reassembling

the K-means clustering algorithm to improve the threads and

hardware resource utilization of mobile GPUs and CPUs.

Figure 3 describes an overview of Kubism. Kubism is based

on the following four key ideas: Clustering reordering, warp

balancing, dynamic skip ratio decision, and heterogeneous

platform-aware task distribution (HETD).

The clustering reordering technique makes the clustering

process more efficient by reorganizing the original Yinyang

K-Means clustering algorithm. Instead of repeatedly check-

ing whether each data point can be skipped before doing

distance calculations, Kubism checks the bound values for

all data points early on, before any calculations start. This

early check helps Kubism find threads that do not need to do

distance calculations, cutting down on unnecessary work.

Warp balancing mitigates warp divergence by organizing

threads within a warp to perform only necessary distance

calculations. Kubism addresses this issue by creating a new

GPU kernel for the local filter algorithm that groups threads

performing active distance calculations into adjacent posi-

tions within the kernel. With this technique, the threads in

the new kernel proceed through the loop together, minimiz-

ing idle periods caused by skipped centroids. By completing

distance calculations with all centroids in fewer loops and

LCTES ’25, June 16–17, 2025, Seoul, Republic of KoreaSeondeok Kim, Sangun Choi, Jaebeom Jeon, Junsu Kim, Minseong Gil, Jaehyeok Ryu, and Yunho Oh

Figure 4. Kubism workflow for five phases, including ini-

tialization and four clustering iterations.

maintaining active participation of all threads, Kubism sig-

nificantly improves the hardware resource utilization.

The dynamic skip ratio decision in Kubism further im-

proves the use of warp balancing by monitoring the effec-

tiveness of the process. The dynamic skip ratio decision

performs two key functions. First, the technique determines

the skip ratio threshold required for applying optimizations

of Kubism during each iteration. Second, the technique de-

cides whether to apply warp balancing based on the skip

ratio threshold and the monitoring results of the current iter-

ation. While warp balancing reduces warp divergence, it can

add extra execution time if an iteration has a low skip ratio

(e.g., 5%). In such a case, the overhead from warp balancing

outweighs its benefits, as warp divergence has less impact.

To address this issue, Kubism predicts the execution time of

the local filter based on the execution time of the previous

iteration and the skip ratio, as well as the skip ratio of the

current iteration. If the actual execution time exceeds the

predicted time, Kubism sets a skip ratio threshold. Kubism

applies the warp balancing only to iterations with a skip ratio

higher than this threshold, using the technique efficiently.

The HETD technique in Kubism employs heterogeneous

computing by distributing distance calculations between

the CPU and GPU. Kubism adaptively determines the best-

performing partitioning ratio of distance calculations be-

tween the two processors, so the CPU and GPU have similar

execution times. This balanced distribution maximizes hard-

ware resource usage and enhances overall performance.

3.2 KubismWorkflow
Figure 4 shows the Kubism workflow with a series of phases.

Themain goal of the performancemonitoring in Kubism is

to dynamically adjust the application of techniques based on

the runtime behavior of each iteration. As shown in Section

2, the skip ratio decreases as iterations progress, indicating

that a larger number of data points need to be processed

in later stages. Kubism continuously monitors this behav-

ior, applying warp balancing until it identifies a skip ratio

threshold where further warp balancing negatively affects

performance.

Initialization Phase: Kubism first initializes key param-

eters that drive its monitoring mechanism. The performance

monitor is initialized with six fields: skip ratio threshold

(skip_threshold), the current and previous iteration execu-

tion times (curr_exec_time and prev_exec_time), skip ra-

tios of the current and previous iterations (curr_skip_ratio
and prev_skip_ratio), and the expected execution time for

the current iteration (exp_exec_time). During the initializa-
tion kernel, these values are set to zero, and upper and lower

bounds are established, similar to the Yinyang K-Means clus-

tering algorithm. This initialization step occurs not only in

the first iteration but also if the number of data points filtered

in the group filter exceeds a certain threshold.

First iteration: During the first iteration, Kubism applies

warp balancing along with reordering and HETD since no

skip ratio threshold has been set yet. The monitor records

the skip ratio for this iteration in curr_skip_ratio before
starting the distance calculation. After the calculations, the

monitor stores the execution time in curr_exec_time. As
this is the initial iteration, there is no previous data to com-

pare with, and Kubism proceeds with full optimization.

Second iteration: In the second iteration, the monitor

updates the prev_skip_ratio and prev_exec_time fields
using the Values from the first iteration. Before the local

filter, the monitor calculates the expected execution time

(exp_exec_time) for this iteration using the values in the

previous iteration and the current skip ratio. Similar to the

first iteration, Kubism applies warp balancing as the thresh-

old is still zero. After the local filter, the monitor compares

curr_exec_time with exp_exec_time. In this case, the exe-

cution time is shorter than expected, so the threshold remains

unchanged, warp balancing is applied in future iterations.

Third iteration and threshold setting: In the third it-

eration, Kubism repeats the process of updating the previ-

ous execution values and recalculating the expected execu-

tion time. During this iteration, the monitor detects that

curr_exec_time is longer than exp_exec_time, indicating
that applying warp balancing is no longer beneficial. Then,

Kubism sets the skip ratio threshold to curr_skip_ratio,
preventing unnecessary warp balancing in future iterations

unless the skip ratio exceeds this threshold.

Fourth iteration and HETD: In the fourth iteration, Ku-

bism uses the established skip ratio threshold to determine

whether to apply warp balancing. The monitor calculates

curr_skip_ratio and compares it to the threshold. As the

skip ratio is lower than the threshold, Kubism avoids warp

balancing and only performs HETD to maximize efficiency.

By monitoring performance in real-time and selectively ap-

plying its optimization techniques, Kubism effectively mini-

mizes execution time while maximizing resource utilization

on mobile heterogeneous platforms.

Kubism: Disassembling and Reassembling K-Means Clustering for Mobile Heterogeneous Platforms LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

Algorithm 2 Kubism Algorithm

Input: Dataset 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑛 }, number of clusters 𝑘 , initial centroids𝐶 =

{𝑐1, 𝑐2, . . . , 𝑐𝑘 }
Parameters: CPU-GPU partition ratio 𝛼 , skip ratio threshold 𝜃

Output: Final cluster centroids𝐶 , cluster assignments for each data point

1: function Kubism for local filter(𝑋 , 𝑘 ,𝐶 , 𝛼 , 𝜃)

2: // Step 1: Initialization

3: Compute initial upper bounds 𝑢𝑏 [𝑖] for each data point 𝑥𝑖
4: Compute lower bounds 𝑙𝑏 [𝑖] [𝑗] for each data point 𝑥𝑖 to each cluster 𝑐 𝑗
5: Assign data points to nearest centroid

6: while not converged do
7: // Step 2: Update centroids

8: for each centroid 𝑐 𝑗 do
9: Update centroid 𝑐 𝑗 by averaging the assigned points

10: end for
11: // Step 3: Reordering and Skip Ratio Calculation

12: for each data point 𝑥𝑖 do
13: Update upper bound 𝑢𝑏 [𝑖] using the previous centroid
14: Update lower bounds 𝑙𝑏 [𝑖] [𝑗] for each centroid group

15: Determine if data point 𝑥𝑖 can skip distance calculation

16: if lower bound 𝑙𝑏 [𝑖] [𝑗] > 𝑢𝑏 [𝑖] then
17: Skip distance calculation for 𝑥𝑖 and centroid 𝑐 𝑗
18: else
19: Calculate distance between 𝑥𝑖 and centroids in the relevant group

20: Update cluster assignment for 𝑥𝑖 to the nearest centroid

21: end if
22: end for
23: // Step 4: Warp Balancing

24: if current skip ratio > 𝜃 then
25: Apply warp balancing to minimize warp divergence on GPU

26: end if
27: // Step 5: Heterogeneous Platform-Aware Task Distribution (HETD)

28: Dynamically distribute tasks between CPU and GPU to minimize idle time

29: // Step 6: Adaptive Load Balancing

30: Adjust partition ratio 𝛼 based on current workload and skip ratio

31: end while
32: return Final centroids𝐶 and cluster assignments

33: end function

3.3 Kubism Implementation Details
Kubism Algorithm: Algorithm 2 describes the key algo-

rithms of Kubism. As shown in Algorithm 2, each thread

processes one data point. The first step is to fetch the cen-

troid number currently assigned to each data point. Then, an

operation is performed to determine whether the distance

calculation can be skipped by comparing the upper and lower

bound values. The efficiency of this process is key to reduc-

ing overall execution time, if the filtering mechanism allows

for skipping a substantial number of distance calculations.

Kubism computes the skip ratio to assess how many dis-

tance calculations are skipped due to the filtering mecha-

nism applied during the reordering stage. As outlined in

Algorithm 2, the skip ratio is computed by the code running

on the GPU, which handles the summation and division of

computation counts stored for each data point during the

reordering phase. The GPU threads calculate the skip ratio

(𝑆𝑅) by dividing the total sum of the computation counts by

the number of operations that all data points filtered in the

group filter would perform with all centroids, as represented

by the following equation:

𝑆𝑅 = 1 − # of Distance Calculations

of Centroids × # of Data Points

(1)

This calculation helps quantify the proportion of distance

calculations skipped during the execution, providing insight

into the effectiveness of the filtering mechanism. A higher

skip ratio indicates that the algorithm is more successful in

reducing unnecessary computations.

The warp balancing technique effectively addresses the

warp divergence problem in GPU computation. By sched-

uling computations across distance calculation loops, this

method reduces idle loops while calculating distances to all

centroids. We implement a balancing buffer that stores infor-

mation indicating which centroid each data point should pro-

cess during each loop. The balancing buffer is implemented

in device memory, so the GPU can manage and access the

data. Instead of directly storing centroid indices, Kubism

utilizes a bitmask representation within the balancing buffer.

Each bit in the bitmask indicates whether the distance to a

specific centroid should be calculated or skipped. Using this

information, Kubism retrieves centroid indices through the

bit positions and precomputes operations from future loops

that would result in idle loops. This precomputation elimi-

nates idle phases, thereby improving overall computational

efficiency by keeping all threads active during calculations.

Kubism distributes data points between the CPU and GPU

based on a partitioning ratio. The data points for both the

CPU and GPU use page-locked memory, which is essential

for heterogeneous computing environments. On embedded

platforms like NVIDIA Jetson, pinned memory maps directly

to the address space of the devices, allowing access without

needing to copy the data. This approach removes the over-

head caused by copying. For data structures that the CPU

only reads, the system copies them during the first iteration

to avoid transferring them between the CPU and GPU in

every iteration, improving overall efficiency.

Kubism transfers the data structures used for the CPU local

filter from the GPU. Also, during the local filter stage, Kubism

updates the data structures containing the bound values, as

well as centroid assignment information. As this stage runs

in parallel on both the CPU and GPU, Kubism allocates these

data structures in page-locked memory to minimize the time

needed to transfer the updated information back to the GPU

once the CPU local filter operation finishes.

Kubism uses heterogeneous computing by running the lo-

cal filter in parallel on both the CPU and GPU for the threads

distributed by HETD. Kubism initially sets the partitioning

ratio based on the CPU and GPU throughput of a given sys-

tem configuration, and the skip ratio of the current iteration,

which indicates the amount of computation. Then, Kubism

determines the number of data points assigned to the CPU

using the ratio. Kubism runs the CUDA kernel on the GPU

using the data points remaining after the CPU assignment.

During the clustering iterations, Kubism dynamically adjusts

the partitioning ratio by comparing the execution time of

CPU and GPU to balance them.

LCTES ’25, June 16–17, 2025, Seoul, Republic of KoreaSeondeok Kim, Sangun Choi, Jaebeom Jeon, Junsu Kim, Minseong Gil, Jaehyeok Ryu, and Yunho Oh

Details of Monitoring Mechanism: In each iteration,

Kubismmonitors performance to optimize the execution pro-

cess. During the first iteration, Kubism initializes the system

by running the reordering, warp balancing, and heteroge-

neous computing stages with the skip threshold set to zero.

Kubism records the current execution time and skip ratio.

From the second iteration onward, it calculates the predicted

execution time using the equation:

𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑇𝑝𝑟𝑒𝑣 ×
(1 − 𝑆𝑅𝑝𝑟𝑒𝑣)

(1 − 𝑆𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
(2)

where𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 ,𝑇𝑝𝑟𝑒𝑣 , 𝑆𝑅𝑝𝑟𝑒𝑣 , 𝑆𝑅𝑐𝑢𝑟𝑟𝑒𝑛𝑡 represent the predicted

execution time, previous execution time, previous skip ratio,

and current skip ratio, respectively.

After completing reordering, warp balancing, and hetero-

geneous computing in the second iteration, Kubism com-

pares the predicted execution time with the actual local filter

execution time. If the predicted execution time is less than

the local filter execution time, Kubism maintains the current

skip threshold. Otherwise, Kubism adjusts the skip thresh-

old for subsequent iterations. In the case where the current

skip ratio is lower than the skip threshold, Kubism skips

warp balancing and proceeds with reordering and hetero-

geneous computing. Otherwise, Kubism performs all stages

as usual. This monitoring and adjustment process repeats

across iterations, so Kubism dynamically adapts to optimize

performance based on the relationship between execution

time and skip ratio, iterating through reordering, warp bal-

ancing, and heterogeneous computing as needed.

Overhead Analysis: Kubism introduces several stages

that contribute to software overhead, but the overall impact

remains negligible. During the reordering phase, the primary

modification involves adjusting the sequence of skip deci-

sions and distance calculations. To minimize the overhead,

Kubism first estimates the skip ratio by sampling a subset

of data points instead of computing it for every point. This

approach precisely estimates the skip ratio while incurring

less overhead, less than 1% of the total execution time. The

overhead from warp balancing varies based on the num-

ber of data points and the skip ratio. In our initial analysis,

this overhead ranges from 7% to 30% of the local filter ker-

nel execution time. Kubism avoids such scenarios using an

intelligent monitoring scheme. Kubism also requires data

structures to store centroid indices and the total number of

computations between data points and centroids. By storing

only one bit per centroid index, Kubism minimizes memory

usage and the number of memory accesses needed to retrieve

centroid indices. The size of these data structures accounts

for only 3.1% of the dataset size. For data point partitioning,

Kubism maintains additional data structures that store in-

formation about which CPU and GPU process data points.

Since only the indices of data points are stored, the size of

these structures remains relatively small, typically within

tens of megabytes.

Table 3. Dataset

Dataset
(N,D)

Number of
Datapoints (N)

Feature
Dimension (D)

Distribution

(0.5 M, 64) 0.5 Million 64

Uniform

random

distribution,

values are

ranged

from 0 to 100.

(0.5 M, 128) 0.5 Million 128

(0.5 M, 256) 0.5 Million 256

(1 M, 64) 1 Million 64

(1 M, 128) 1 Million 128

(1 M, 256) 1 Million 256

(2 M, 64) 2 Million 64

(2 M, 128) 2 Million 128

(2 M, 256) 2 Million 256

Table 4. Evaluation Configurations

Configuration Key Characteristics

Baseline
Prior GPU-based Yinyang K-means clustering [33]. This configuration

suffers from warp divergence and hardware underutilization.

WB+HETD
This configuration consistently applies all three techniques introduced

in this paper (clustering reordering, warp balancing, HETD). However,

warp balancing may cause significant overhead in some iterations.

Kubism
Kubism selectively applies three techniques to take advantage

of each technique and avoid the overhead.

4 Evaluation
4.1 Methodology
We conduct all experiments on the NVIDIA Jetson Orin AGX

platform with the identical system specifications in Table

1. To examine the effects of the structure of the dataset, we

configure datasets while varying the number of data points

and the feature dimension based on the real-world datasets

used in prior work [11, 33]. We select three numbers of data

points (500K, 1M, and 2M) and feature dimensions (64, 128,

and 256) and combine them to build nine datasets, as listed

in table 3. We use a uniform random distribution with values

ranging from 0 to 100 to generate all datasets. We set the

number of clusters (𝑘) to 1024 for all experiments.

Table 4 summarizes the key characteristics of each evalu-

ated method, helping to clarify the differences in how they

leverage CPU and GPU resources. To evaluate the perfor-

mance of Kubism, we compare its execution time to two

techniques. The first technique, referred to as Baseline, is
the GPU-based implementation of the Yinyang K-means

clustering algorithm, as described in prior work [33]. The

second technique,WB+HETD, consistently applies reorder-

ing, HETD, and warp balancing techniques for all iterations,

aiming for more efficient thread scheduling. Kubism is the

combination of reordering, warp balancing, and task distri-

bution techniques. In addition to execution time, we measure

power consumption and hardware utilization using Tegras-

tats [28] and the NVIDIA Nsight Systems profiler [26].

4.2 Performance
Figure 5 shows the end-to-end speedup across the following

9 datasets in the table 3. We normalize all results to the

baseline for each dataset. Kubism achieves a speedup of 1.23×

Kubism: Disassembling and Reassembling K-Means Clustering for Mobile Heterogeneous Platforms LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

Figure 5. End-to-end speedup for all datasets. The average

speedup (geometric mean) of Kubism over the baseline is

1.23×.

Figure 6. Speedup for all iterations in (0.5M, 64) dataset.

compared to the baseline across all datasets in geometric

mean. In the (1M, 256) dataset, Kubism achieves the highest

speedup, as the dataset exhibits the highest average skip ratio.

While the baseline suffers from warp divergence in (1M, 256)

dataset, Kubism significantly improves the performance by

employing the warp balancing technique. We also observe

that Kubism achieves high performance improvements for

large datasets, such as (1M, 256), (2M, 128), and (2M, 256).

As we mentioned in Section 3, the software overhead of

warp balancing is proportional to the number of data points,

not the feature dimension. Hence, processing large datasets

exhibits a long execution time with relatively small overhead.

In contrast, in small datasets such as (0.5M, 64), the overhead

introduced by warp balancing is heavy. Kubism does not

apply warp balancing to avoid such overheads.

To further analyze the effects of dataset size, we demon-

strate the results for all iterations of (0.5M, 64) and (2M, 256)

datasets. Figure 6 shows the speedup of WB+HETD and Ku-

bism over the baseline across all iterations on the (0.5M, 64)

dataset. Kubism achieves up to 1.56× speedup in high skip

ratio iterations and 1.09× in low skip ratio ones. With the

low feature dimensions, WB+HETD shows relatively poor

performance due to the overhead from warp balancing. In

iterations 4 to 15, WB+HETD shows over 80% performance

degradation, despite applying HETD. Kubism improves the

Figure 7. Speedup for all iterations in (2M, 256) dataset.

Figure 8. End-to-end normalized EDP for all datasets.

performance in those iterations by dynamically employing

heterogeneous computing only.

Figure 7 shows the speedup of WB+HETD and Kubism

over the baseline across all iterations on the (2M, 256) dataset.

On a large dataset, Kubism achieves a higher speedup than

the baseline. Kubism achieves up to 2.65× speedup in high

skip ratio iterations and 1.2× in low skip ratio ones. As ex-

pected, the overhead of warp balancing is much smaller than

that shown in Figure 6. Also, the performance improvement

of WB+HETD is larger than that in (0.5M, 64). Despite the

effectiveness of warp balancing, Kubism applies warp bal-

ancing only for four iterations because the dataset exhibits

a low average skip ratio. The advantage of Kubism can be

increased for datasets with higher skip ratios. These results

show that Kubism delivers consistent improvements across

various datasets, making it an effective solution for acceler-

ating K-means clustering on heterogeneous platforms.

4.3 Energy Efficiency
We measure the energy efficiency of Kubism compared to

the baseline by using the energy-delay-product (EDP). Fig-

ure 8 depicts the normalized EDP results. Kubism achieves

EDP reductions in 7 out of 9 datasets, showing a 17% EDP

reduction on average. Kubism reduces the execution time by

17%, while the total energy consumption of Kubism remains

similar to the baseline. CPU power consumption increases

by 2.78× due to HETD, which accounts for 5-20% of the total

LCTES ’25, June 16–17, 2025, Seoul, Republic of KoreaSeondeok Kim, Sangun Choi, Jaebeom Jeon, Junsu Kim, Minseong Gil, Jaehyeok Ryu, and Yunho Oh

Table 5. Number of active threads for the baseline and Ku-

bism. We use (1 M, 128) dataset and sample five iterations to

maintain consistency with the results in Table 2.

Iteration Skip Ratio Number of Active Threads per Warp
Baseline Kubism

1 0.91 2.84 9.06

2 0.60 12.76 16.02

3 0.24 24.16 24.04

4 0.06 29.96 29.90

5 0.01 31.58 31.56

power usage in the baseline. However, GPU power consump-

tion stays almost the same as the baseline since threads in a

warp still consume power even if some are idle in the base-

line. Overall, Kubism consumes about 18% more power than

the baseline, but the faster execution time offsets this in-

crease, resulting in EDP reduction. By dynamically applying

warp balancing and HETD, Kubism reduces execution time

without excessive energy consumption.

4.4 GPU Behavior
We perform a detailed analysis to see how effectively Kubism

reduces warp divergence through warp balancing. Using

Nsight Compute [25], we profile the average active thread

per warp metric during execution.

Table 5 shows the experimental results of the active threads

per warp across iterations from 1 to 5 on the (1M, 128) dataset.

For the first iteration, which shows a high skip ratio of 0.91,

Kubism achieves a 3.2× improvement in the number of active

threads per warp compared to the baseline. With the highest

skip ratio among all iterations, the gap between Kubism and

the baseline is the largest. On iteration 2, Kubism achieves

a 1.3× improvement in the active threads per warp com-

pared to the baseline. We observe that atomic instructions

are executed not only in the local filter kernel but also in

other kernels. Also, some threads in the local filter kernel

exhibit an uneven distribution of computations, even if the

proposed warp balancing is applied. So, there remains a gap

between the ideal number of active threads (i.e., 32) and the

actual experimental results. Considering this aspect, our ex-

perimental results show that Kubism effectively mitigates

warp divergence. For iterations 3, 4, and 5, the skip ratios are

low, which means all threads in the warp remain busy for

computation. Hence, there is no difference between Kubism

and the baseline since these iterations do not cause warp

divergence due to low skip ratios.

5 Related Work
K-means clustering algorithms: Prior work has proposed

diverse K-means clustering algorithms based on the Lloyd

K-means clustering algorithm [23]. While Lloyd K-means

clustering algorithm is simple and effective, the required

number of operations scales linearly with the dataset size

and the number of clusters. To reduce the number of compu-

tations, prior work has proposed K-means clustering algo-

rithms using bound values for skipping redundant distance

calculations [11–14, 24]. The algorithm is similar to the local

filter explained in Section 2. Drake et al. and Hamerly et al.

have proposed algorithms that keep fewer bound values for

each datapoint than Elkan et al. to reduce the overhead of

bound checking and maintaining the values [12, 14]. Ding et

al. have proposed the Yinyang K-means clustering algorithm.

Yinyang K-means clustering uses group filters to skip a large

number of computations before applying the local filter [11].

Hardware acceleration of K-means clustering: To fur-
ther acceleration for K-means clustering, architectural stud-

ies have been proposed [18, 33, 35]. Zhou et al. accelerated

the Yinyang K-means clustering algorithm on ARM-based

CPUs through vectorization, along with memory and data

layout optimization [35]. However, since the K-means clus-

tering algorithm exhibits significant parallelization opportu-

nities, relying solely on CPUs is not optimal.

Prior work has proposed GPU-based K-means clustering

acceleration techniques. Krulis et al. have introduced a com-

prehensive analysis of CUDA K-means clustering algorithms,

focusing on memory behavior and load balancing for threads

[18]. However, they have not explored how the filtering pro-

cess affects the warp divergence. Taylor et al. have proposed

accelerating the Yinyang K-means clustering algorithm on

GPUs by leveraging the single instruction multiple threads

(SIMT) architecture [33]. Despite the parallelization efforts,

avoiding distance calculations can lead to warp divergence

and result in performance degradation. Unlike prior work, we

propose a heterogeneous platform-based Yinyang K-means

clustering acceleration technique.

6 Conclusion
In this paper, we propose Kubism, a novel software approach

to optimizing the Yinyang K-means clustering algorithm

on mobile heterogeneous platforms. Prior work on GPU-

accelerated suffers from inefficient GPU hardware resource

underutilization due to warp divergence and does not utilize

CPUs. Kubism addresses these challenges by reordering op-

erations, applying warp balancing, using dynamic skip ratio

decisions, and distributing tasks between the CPU and GPU.

Our evaluation shows the potential of Kubism to enhance

K-means clustering efficiency on mobile platforms.

Acknowledgments
We thank anonymous reviewers for their invaluable feed-

back. This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea gov-

ernment (MSIT) (NRF-2022R1C1C1011021). Yunho Oh is the

corresponding author.

Kubism: Disassembling and Reassembling K-Means Clustering for Mobile Heterogeneous Platforms LCTES ’25, June 16–17, 2025, Seoul, Republic of Korea

References
[1] Tarek S Abdelrahman. 2020. Cooperative software-hardware accel-

eration of K-means on a tightly coupled CPU-FPGA system. ACM
Transactions on Architecture and Code Optimization (TACO) 17, 3 (2020),
1–24. https://doi.org/10.1145/3406114

[2] Hafsa Kara Achira, Camélia Slimani, and Jalil Boukhobza. 2023. Train-

ing K-means on Embedded Devices: a Deadline-aware and Energy

Efficient Design. In 2023 31st International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 1–8. https://doi.org/10.1109/MASCOTS59514.2023.
10387589

[3] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam.

2020. The k-means algorithm: A comprehensive survey and perfor-

mance evaluation. Electronics 9, 8 (2020), 1295. https://doi.org/10.
3390/electronics9081295

[4] Bilel Ben Ali and Youssef Massmoudi. 2013. K-means clustering based

on gower similarity coefficient: A comparative study. In 2013 5th Inter-
national conference on modeling, simulation and applied optimization
(ICMSAO). IEEE, 1–5. https://doi.org/10.1109/ICMSAO.2013.6552669

[5] Janki Bhimani, Miriam Leeser, and Ningfang Mi. 2015. Accelerating K-

Means clustering with parallel implementations and GPU computing.

In 2015 IEEE high performance extreme computing conference (HPEC).
IEEE, 1–6. https://doi.org/10.1109/HPEC.2015.7322467

[6] Yingfeng Cai, Tianyu Luan, Hongbo Gao, Hai Wang, Long Chen,

Yicheng Li, Miguel Angel Sotelo, and Zhixiong Li. 2021. YOLOv4-

5D: An effective and efficient object detector for autonomous driving.

IEEE Transactions on Instrumentation and Measurement 70 (2021), 1–13.
https://doi.org/10.1109/TIM.2021.3065438

[7] Ming-Syan Chen, Jiawei Han, and Philip S. Yu. 1996. Data mining: an

overview from a database perspective. IEEE Transactions on Knowledge
and data Engineering 8, 6 (1996), 866–883. https://doi.org/10.1109/69.
553155

[8] Xu Chen and Changwei Luo. 2021. Real-time lane detection based

on a light-weight model in the wild. In 2021 IEEE 4th International
Conference on Computer and Communication Engineering Technology
(CCET). IEEE, 36–40. https://doi.org/10.1109/CCET52649.2021.9544226

[9] Radha Chitta, Rong Jin, Timothy C Havens, and Anil K Jain. 2011.

Approximate kernel k-means: Solution to large scale kernel clustering.

In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining. 895–903. https://doi.org/10.
1145/2020408.2020558

[10] M Deepa, S Soundarya, S Reshma, B Aakash, T Srivarsa, and R Vid-

hyapriya. 2023. FPGA Implementation of Yinyang K-Means Clustering.

In 2023 IEEE 20th India Council International Conference (INDICON).
IEEE, 219–224. https://doi.org/10.1109/INDICON59947.2023.10440752

[11] Yufei Ding, Yue Zhao, Xipeng Shen, Madanlal Musuvathi, and Todd

Mytkowicz. 2015. Yinyang k-means: A drop-in replacement of the

classic k-means with consistent speedup. In International conference
on machine learning. PMLR, 579–587.

[12] Jonathan Drake and Greg Hamerly. 2012. Accelerated k-means with

adaptive distance bounds. In 5th NIPS workshop on optimization for
machine learning, Vol. 8. 1–4.

[13] Charles Elkan. 2003. Using the triangle inequality to accelerate k-

means. In Proceedings of the 20th international conference on Machine
Learning (ICML-03). 147–153.

[14] Greg Hamerly. 2010. Making k-means even faster. In Proceedings of
the 2010 SIAM international conference on data mining. SIAM, 130–140.

https://doi.org/10.1137/1.9781611972801.12
[15] Md Tayeb Himel, Mohammed Nazim Uddin, Mohammad Arif Hossain,

and Yeong Min Jang. 2017. Weight based movie recommendation

system using K-means algorithm. In 2017 International Conference on
Information and Communication Technology Convergence (ICTC). IEEE,
1302–1306. https://doi.org/10.1109/ICTC.2017.8190928

[16] Tapas Kanungo, David M Mount, Nathan S Netanyahu, Christine D

Piatko, Ruth Silverman, and Angela Y Wu. 2002. An efficient k-means

clustering algorithm: Analysis and implementation. IEEE transactions
on pattern analysis and machine intelligence 24, 7 (2002), 881–892.

https://doi.org/10.1109/TPAMI.2002.1017616
[17] Yuto Kitagawa, Tasuku Ishigoka, and Takuya Azumi. 2017. Anom-

aly prediction based on k-means clustering for memory-constrained

embedded devices. In 2017 16th IEEE International Conference on
Machine Learning and Applications (ICMLA). IEEE, 26–33. https:
//doi.org/10.1109/ICMLA.2017.0-182

[18] Martin Kruliš and Miroslav Kratochvíl. 2020. Detailed analysis and

optimization of CUDA k-means algorithm. In Proceedings of the 49th
International Conference on Parallel Processing. 1–11. https://doi.org/
10.1145/3404397.3404426

[19] Haobin Li and Yi Zhang. 2021. Vehicle Flow Detection Based on

Improved Deep Structure and Deep Sort. In Proceedings of the 2021 6th
International Conference on Multimedia and Image Processing. 72–77.
https://doi.org/10.1145/3449388.3449394

[20] Yujie Li, Shuo Yang, Yuchao Zheng, and Huimin Lu. 2021. Improved

point-voxel region convolutional neural network: 3D object detectors

for autonomous driving. IEEE Transactions on Intelligent Transportation
Systems 23, 7 (2021), 9311–9317. https://doi.org/10.1109/TITS.2021.
3071790

[21] Dongfang Liu, Yaqin Wang, Tian Chen, and Eric T Matson. 2019. Ap-

plication of color filter adjustment and k-means clustering method

in lane detection for self-driving cars. In 2019 Third IEEE interna-
tional conference on robotic computing (IRC). IEEE, 153–158. https:
//doi.org/10.1109/IRC.2019.00030

[22] Rui Liu, Xuanzhen Xu, Yuwei Shen, Armando Zhu, Chang Yu, Tianjian

Chen, and Ye Zhang. 2024. Enhanced Detection Classification via

Clustering SVM for Various Robot Collaboration Task. In 2024 6th
International Conference on Communications, Information System and
Computer Engineering (CISCE). 1121–1125. https://doi.org/10.1109/
CISCE62493.2024.10653146

[23] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transac-
tions on information theory 28, 2 (1982), 129–137. https://doi.org/10.
1109/TIT.1982.1056489

[24] James Newling and François Fleuret. 2016. Fast k-means with accurate

bounds. In International Conference on Machine Learning. PMLR, 936–

944.

[25] Nvidia. 2024. NVIDIA Nsight Compute. https://developer.nvidia.com/
nsight-compute

[26] Nvidia. 2024. NVIDIA Nsight Systems. https://developer.nvidia.com/
nsight-systems Accessed: Oct. 3, 2024.

[27] Nvidia Corporation. 2022. NVIDIA Jetson AGX Orin Series: A Giant

Leap Forward for Robotics and Edge AI Applications.

[28] Nvidia Corporation. 2024. Tegrastats Utility.

[29] Hermawan Prasetyo and Ayu Purwarianti. 2014. Comparison of

distance and dissimilarity measures for clustering data with mix at-

tribute types. In 2014 The 1st International Conference on Informa-
tion Technology, Computer, and Electrical Engineering. IEEE, 276–280.
https://doi.org/10.1109/ICITACEE.2014.7065756

[30] David Sculley. 2010. Web-scale k-means clustering. In Proceedings
of the 19th international conference on World wide web. 1177–1178.
https://doi.org/10.1145/1772690.1772862

[31] Michael Shindler, Alex Wong, and Adam Meyerson. 2011. Fast and

accurate k-means for large datasets. Advances in neural information
processing systems 24 (2011).

[32] Camélia Slimani, Stéphane Rubini, and Jalil Boukhobza. 2019. K-MLIO:

enabling k-means for large data-sets and memory constrained embed-

ded systems. In 2019 IEEE 27th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS). IEEE, 262–268. https://doi.org/10.1109/MASCOTS.2019.
00037

https://doi.org/10.1145/3406114
https://doi.org/10.1109/MASCOTS59514.2023.10387589
https://doi.org/10.1109/MASCOTS59514.2023.10387589
https://doi.org/10.3390/electronics9081295
https://doi.org/10.3390/electronics9081295
https://doi.org/10.1109/ICMSAO.2013.6552669
https://doi.org/10.1109/HPEC.2015.7322467
https://doi.org/10.1109/TIM.2021.3065438
https://doi.org/10.1109/69.553155
https://doi.org/10.1109/69.553155
https://doi.org/10.1109/CCET52649.2021.9544226
https://doi.org/10.1145/2020408.2020558
https://doi.org/10.1145/2020408.2020558
https://doi.org/10.1109/INDICON59947.2023.10440752
https://doi.org/10.1137/1.9781611972801.12
https://doi.org/10.1109/ICTC.2017.8190928
https://doi.org/10.1109/TPAMI.2002.1017616
https://doi.org/10.1109/ICMLA.2017.0-182
https://doi.org/10.1109/ICMLA.2017.0-182
https://doi.org/10.1145/3404397.3404426
https://doi.org/10.1145/3404397.3404426
https://doi.org/10.1145/3449388.3449394
https://doi.org/10.1109/TITS.2021.3071790
https://doi.org/10.1109/TITS.2021.3071790
https://doi.org/10.1109/IRC.2019.00030
https://doi.org/10.1109/IRC.2019.00030
https://doi.org/10.1109/CISCE62493.2024.10653146
https://doi.org/10.1109/CISCE62493.2024.10653146
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://doi.org/10.1109/ICITACEE.2014.7065756
https://doi.org/10.1145/1772690.1772862
https://doi.org/10.1109/MASCOTS.2019.00037
https://doi.org/10.1109/MASCOTS.2019.00037

LCTES ’25, June 16–17, 2025, Seoul, Republic of KoreaSeondeok Kim, Sangun Choi, Jaebeom Jeon, Junsu Kim, Minseong Gil, Jaehyeok Ryu, and Yunho Oh

[33] Colin Taylor and Michael Gowanlock. 2021. Accelerating the yinyang

k-means algorithm using the GPU. In 2021 IEEE 37th International
Conference on Data Engineering (ICDE). IEEE, 1835–1840. https://doi.
org/10.1109/ICDE51399.2021.00163

[34] Teng Yu, Wenlai Zhao, Pan Liu, Vladimir Janjic, Xiaohan Yan, Shicai

Wang, Haohuan Fu, Guangwen Yang, and John Thomson. 2019. Large-

scale automatic k-means clustering for heterogeneous many-core su-

percomputer. IEEE Transactions on Parallel and Distributed Systems 31,

5 (2019), 997–1008. https://doi.org/10.1109/TPDS.2019.2955467
[35] Tianyang Zhou, QinglinWang, Shangfei Yin, Ruochen Hao, and Jie Liu.

2022. Optimizing Yinyang K-Means Algorithm on ARMv8 Many-Core

CPUs. In International Conference on Algorithms and Architectures for
Parallel Processing. Springer, 676–690. https://doi.org/10.1007/978-3-
031-22677-9_36

Received 2025-03-18; accepted 2025-04-21

https://doi.org/10.1109/ICDE51399.2021.00163
https://doi.org/10.1109/ICDE51399.2021.00163
https://doi.org/10.1109/TPDS.2019.2955467
https://doi.org/10.1007/978-3-031-22677-9_36
https://doi.org/10.1007/978-3-031-22677-9_36

	Abstract
	1 Introduction
	2 Why Kubism?
	2.1 K-Means Clustering Algorithms
	2.2 K-Means Clustering in Mobile Platforms
	2.3 Key Challenges of K-Means on Mobile Platforms

	3 Kubism
	3.1 Key Idea of Kubism
	3.2 Kubism Workflow
	3.3 Kubism Implementation Details

	4 Evaluation
	4.1 Methodology
	4.2 Performance
	4.3 Energy Efficiency
	4.4 GPU Behavior

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

